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“All of the segregation indexes have in common the assumption that

segregation can be measured without regard to the spatial patterns of

white and nonwhite residence in a city” (Duncan and Duncan, 1955).

Abstract

Comparative segregation analysis holds the potential to provide rich in-

sights into urban socio-spatial dynamics. However, comparisons of the lev-

els of segregation between two, or more, cities at the same point in time

complicated by di�erent spatial contexts. The extent to which di�erences

in segregation between two cities is due to di�erences in spatial structure

or to di�erences in composition remains an open question. This paper de-

velops a framework to disentangle the contributions of spatial structure and

ethnic composition in carrying out comparative segregation analysis. The

approach uses spatially explicit counterfactuals embedded in a Shapley de-

composition. We illustrate this approach in a case study of the 50 largest

metropolitan statistical areas in the U.S.

1 Introduction

Comparison of the levels of segregation across US cities is a popular pursuit in

both academia
1

and in the popular press.
2

Most often, these comparisons follow

a similar strategy involving the calculation of an index of segregation for a col-

lection of cities at one point in time, followed by a ranking of the values for the

index.

The resulting rankings invariably garner widespread attention. Yet, from a

methodological point of view, they also raise a number of questions. The ordinal

1http://www.censusscope.org/us/print_rank_dissimilarity_white_black.
html

2https://www.washingtonpost.com/graphics/2018/national/
segregation-us-cities/?noredirect=on&utm_term=.b8e434f29177

1
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nature of these summaries is often emphasized. Finding that, in 2000, Chicago

ranked 6th
1

while Newark ranked 7th conveys a di�erent impression than know-

ing the former had a dissimilarity index of 83.6 relative to the latter’s index of 83.4.

The question of whether these di�erences are signi�cant often goes unasked, and

therefore, unanswered. This is curiously distinct from much quantitative social

science research where questions of inference are central to the investigation. One

of the main reasons for the descriptive orientation of much of the segregation lit-

erature is the limited amount of work developing inferential approaches.

Existing work on inference has adopted an analytical approach and, based

on assumptions about the data generating process, the distribution for a partic-

ular index is analyzed and its sampling distribution derived (Allen et al., 2015).

A key issue in the literature is the so called small unit problem which concerns

an upward bias in segregation indices when the sampling unit is small and thus

contains a small number of people. Because most indices are functions of propor-

tions, they can su�er from a small sample problem due to large sampling variance

because the denominators are small. Adjustments to the upward bias have been

identi�ed in the literature but have limitations due to their reliance on asymptotic

reasoning.

Alongside the general neglect of questions of inference, and the limited amount

of work on inferential frameworks for segregation, the quote by Duncan suggests

these indices may only be capturing part of the complex nature of urban segre-

gation. In modern parlance, most segregation indices are “locationally invariant”.

That is, they are insensitive to the spatial distribution of the group shares across

the enumeration units in a city.

While this has been recognized for over half a century, we argue spatial ques-

tions take on increasing importance when the focus is on comparative segregation

analysis. The complexities, and di�erences, in the spatial structures of Chicago

and Newark pose challenges to comparative investigations, yet these remain ig-

nored. The same challenges are likely to hold in any comparisons of di�erent

cities at the same point in time, the same city at two points in time, or the com-

parative dynamics of segregation between two di�erent cities and time periods.

In this paper we consider comparative segregation analysis from a spatially

explicit perspective to make several contributions. We propose a framework for

disentangling the roles of varying spatial structure and composition when car-

rying out comparative segregation analysis. Our framework is based on a de-

composition of di�erences in segregation between two cities, or the same city at

two points over time into spatial and attribute contributions. The approach relies

on novel counterfactual distributions for the comparisons cities together with a

Shapley value decomposition de�ned on these counterfactuals. We also provide

empirical insights on the magnitude of these components across 50 metropolitan

2



areas in the US over the period 2000-2010.

The remainder of the paper is organized as follows. We �rst revisit the lit-

erature on comparative segregation and examine the complications that spatial

structure and e�ects pose for such analyses. In section 3, we present our frame-

work for comparative segregation analysis that is designed to address some of

these issues. We then provide an empirical illustration of our framework in sec-

tion 4. The paper concludes with a summary of key points and suggestions for

future areas of research.

2 Comparing Measures of Segregation

Calculating segregation measures and drawing comparisons between cities is among

the oldest traditions in urban social science. Indeed, the “concentric zones model”

of the fabled Chicago school, to which many trace the genesis of contemporary

urban studies, was constructed and defended through the comparative analysis of

segregation in American cities. Focusing on Chicago, Detroit, Manhattan, Cleve-

land, Philadelphia, and Pittsburgh, Burgess (1928) famously counted the number

of neighborhoods in which di�erent minority groups comprised more than 10% of

the population. Using his admittedly coarse measure, he then compared the cities

with one another, leveraging the results to argue that similar segregation struc-

tures appeared in each of them, leading to validation for the concentric zones

model. In the century that followed, a massive literature appeared that focused

on the measurement of segregation, much of which followed Burgess’s original

recipe: select a particular segregation measure, calculate the measure for a vari-

ety of cities, and use the resulting statistics to compare and contrast the patterns

found in each city. Despite the simplicity of this recipe, there is considerable

breadth and depth to this literature.

Much of the segregation literature focuses on developing improvements to

statistical measurement techniques (Massey, 1978b; Wong, 1993; Massey et al.,

1996; Wong, 1999; Reardon and Firebaugh, 2002; Wong, 2003, 2004; Dawkins, 2004;

Reardon and O’Sullivan, 2004; Wong, 2005; Sean F. Reardon et al., 2008; Chodrow,

2017), while a parallel body applies these metrics to the study of gender, ethnic,

racial, occupational, educational, income, and other forms of segregation (Mare

and Bruch, 2011). For decades, these two strains have fed o� one another, with

empirical studies revealing undesirable properties of common segregation indices,

and statistical work proposing alternative techniques or corrections to account for

the identi�ed shortcomings. Despite a constant stream of incremental improve-

ments, and dozens of segregation indices proposed and applied throughout the

literature, there remains considerable room for improvement in methods designed
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for segregation analysis, particularly from the perspective of comparative frame-

works. Put di�erently, while there has been vast improvement in the theoretical

and computational measurement of segregation, the past century has seen almost

no innovation that is able to overcome the “problems of inter-urban comparative

work that arise because of the nature of available census data sets” (Johnston,

1981, p.246). Herein we review these problems and the ways in which various

scholarship has tried to address them.

Existing Examples

Comparisons Over Space

In the canon of comparative segregation studies, the most common methodolog-

ical technique is for researchers to choose and defend the use of a particular seg-

regation index, calculate index values for a set of cities or regions, and rank and

compare the resulting values describing the ordinal structure across cities. There-

after, researchers sometimes examine how these ordinal rankings di�er for alter-

native indices. For decades, scholars have deployed these descriptive methods

successfully to compare residential segregation in a wide range of contexts, cul-

tures, and time periods. Both canonical and recent work has examined segrega-

tion by race and class in American cities thoroughly (Clark, 1986a; Ihlanfeldt and

Sca�di, 2002, 2004; Brinegar and Leonard, 2008; Hwang, 2015; Wang et al., 2018).

But scholarship is by no means limited to American cities or social constructs.

Elsewhere, researchers have compared segregation measurements between global

cities (Harsman and Quigley, 1992; Marcińczak et al., 2015; Musterd et al., 2017),

between countries (Goering, 1993; Johnston et al., 2007), and within cities in coun-

tries across the globe (Morgan, 1975; Owusu and Agyei-Mensah, 2011; Wang and

Li, 2016). Neither are place-based comparisons limited necessarily to analysis

of residential segregation. A large body of work in sociology and labor studies

examines occupational segregation by race and gender, and how those patterns

compare across countries and/or labor markets (Blackburn et al., 1993), and while

these works are conceptually distinct, their formula for comparative analysis is

identical.

Comparative studies of this variety are useful because they permit observa-

tions such as “in general there is less segregation in Australia and New Zealand”

than in Canada, the United Kingdom and the United States (Johnston et al., 2007,

p.713), and these patterns can be further analyzed by the di�ering social contexts

of each country, or used to develop a policy agenda, etc. But the simplicity of this

analytical technique and the resulting rankings masks a crucial uncertainty be-

cause inter-urban comparisons are never truly “apples-to-apples”. It is impossible
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to compare segregation in City A versus City B while accounting appropriately

for the idiosyncratic di�erences between them in size, scale, and con�guration.

Critiques in comparative segregation research often arise over concerns about

data quality and measurement approaches. Chief among the criticisms is that

segregation measurements are sensitive to (at least) two critical features of urban

areas beyond control of the analyst. First, since indices operate on population ra-

tios, they are notably sensitive to the relative size of di�erent population groups

in each city. Small shares of minority populations can in�ate widely used mea-

sures like the index of dissimilarity (Cortese et al., 1976; Clark, 1986b; Massey,

1978a; Reardon and O’Sullivan, 2004). Second, while residential segregation is a

multiscalar phenomenon whose smallest scale manifests at the housing-unit level,

the census data used to calculate segregation measurements necessarily relies on

aggregations to larger polygons to protect con�dentiality. As a result, “all mea-

sures of spatial and aspatial segregation that rely on population counts aggregated

within subareas are sensitive to the de�nitions of the boundaries of these spatial

subareas” (Reardon and O’Sullivan, 2004)[p.124]. That is, segregation indices are

signi�cantly a�ected by the size and shape of the census tracts (or other spatial

units) that serve as the basis of such measures (Jakubs and Jakubus, 1981; Massey,

1978b). To overcome issues related to census enumeration units, Reardon and

O’Sullivan (2004) interpolate census blocks to a regular grid so that spatial units

approximate a continuous surface, and several others have adopted this technique

(Lee et al., 2008; Reardon et al., 2006) in the literature. While this method skirts

issues of census boundary con�guration, kernel-based interpolation of this va-

riety relies on what may be highly questionable assumptions about population

density, and explicitly ignores important physical features like impassable terrain

or uneven development. As a result, the population surfaces are often inaccurate,

raising questions about the validity of segregation measures generated by these

techniques.

Apart from technical issues inherent in the properties of particular indices

and the applicability of available data, methods for comparative analysis still leave

much to be desired since, as Clark (1986b) points out, the conceptual distinction

between indices can lead to signi�cantly di�erent interpretations in applied set-

tings. The di�erence in segregation between City A and City B may look trivial

when measured with the index of isolation, but appear signi�cantly larger when

measured with the Gini index. Current techniques leave no recourse for this prob-

lem other than argumentation regarding which index is the superior, trustworthy

measure– but even in the case of perfectly unbiased indices, methodological im-

pediments remain.

In their classic study, Massey et al. (1996) describe �ve conceptual dimensions

of segregation they term evenness, exposure, concentration, centralization, and
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clustering, and while there is debate over whether these represent the “true” di-

mensions of residential segregation, there is nonetheless agreement that multiple

dimensions are worthy of consideration. Thus, dozens of segregation indices per-

sist in the literature, thanks in part to their desirable sensitivity to various di�erent

dimensions. In applied comparative research, however, di�erential sensitivity can

by de�nition lead to ambiguous results. In problematic cases, segregation indices

disagree by wide margins, as discussed by Clark (1986a)[p.97] who shows that

“Baltimore (Table 1) was almost twice as segregated as San Jose on the dissimi-

larity index in 1970, but the exposure index suggested that while Baltimore was

substantially segregated, San Jose was not”. Explaining the gap between these

measures for the two cities presents an interesting avenue for further study, but

also an impasse for statistical comparative work. To our knowledge, no existing

quantitative techniques are capable of analyzing whether the segregation mea-

sures for each city are signi�cantly di�erent in either semantic or statistical terms.

Comparisons Over Time

A natural extension of comparative segregation analysis is the inclusion of time

as an important dimension. Incorporating temporality into the study of urban

segregation typically assumes one of three �avors; A large body of work exam-

ines the experience of individual households, and whether minority members are

able to escape segregated neighborhoods in successive generations (Bischo� and

Reardon, 2013). This work grows from the life course tradition in sociology to

address questions pertaining to the long-term experience of neighborhood and

community realized by members of minority groups (McAvay, 2018). While this

literature sheds considerable light onto the prevalence and persistence of inter-

generational segregation, it typically takes segregation measures as given, and

focuses the analysis on migration patterns that expose families higher or lower

levels of urban segregation. The emphasis here is less on the measurement of

segregation and more on the residential mobility patterns that bring individuals

into contact with segregation, and thus is less useful for comparative work.

Another currently very active area of research in the urban studies focuses on

measuring segregation as a function of daily time. This is an extension of research

on time geography and seeks to incorporate temporal variation in the experiences

of individuals as they move throughout an urban activity space, recognizing that

the experience of segregation expands well beyond the residential neighborhood

and into the employment, leisure, and entertainment spaces that people move

through and inhabit throughout the day (Hägerstraand, 2005; van Ham and Tam-

maru, 2016; Kwan, 2015; Park and Kwan, 2018). As such, the activity space liter-

ature attempts to capture the dynamic and composite experience of segregation
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resulting from the social interactions that occur in these spaces as population ho-

mogeneity �uctuates naturally throughout the course of a typical day (Wong and

Shaw, 2011; Kwan, 2015; Wang and Li, 2016; Wang et al., 2018; Zhang et al., 2018).

Work on activity-space segregation is appearing more frequently in recent years,

and nascent but growing literature has revealed an important dimension to the

ways in which segregation is realized through daily routine.

Despite its utility for showing how measures �uctuate in space over time, this

literature engages less with temporal comparisons, and more with the ways in

which segregation levels can be averaged more reliably over the course of a day.

For this reason, some scholars have argued that it is preferable to treat activity

space as a measure of spatial context as opposed to a proper temporal consider-

ation of segregation (Fowler et al., 2016). We agree with this logic and �nd the

activity space literature less informative for comparative segregation analytics.

For comparative analysis, the most relevant area of research seeks to exam-

ine how a given segregation index evolves in a single place over time. This in-

cludes the calculation of a particular segregation index at several cross-sectional

periods, then examining overall trends in index values over time and/or between

discrete time-steps (usually decennial). Here, scholars seek to address questions

of how the racial and ethnic mix within a system of neighborhoods is evolving

over time, and whether shifting demographic migration patterns lead to more or

less integration. Unlike the temporal methods discussed above, which take the

perspective of individuals or groups and examine how mobility exposes them to

di�erent spatial contexts, this work takes the perspective of places and examines

how migration and residential selection a�ect segregation measures at the city

level. For decades, this has been a large and active area of urban research, but

has become increasingly so in recent years as more data become available. Again,

researchers follow the pattern of choosing a study area, computing segregation

indices at several points in time, and examining the linear trend (Lieberson and

Carter, 1982; Charles, 2003; Bailey, 2012; De la Roca et al., 2014; Intrator et al.,

2016).

Temporal comparative analysis provides a unique window into the dynamic

structure of segregation and the ways in which urban areas are evolving. Com-

parisons over time help us understand the paths that cities follow, and whether

they trend toward integration or separation, though these analyses too su�er a

variety of drawbacks. Among the chief criticisms of temporal comparisons is that

they necessarily rely on decennial census data, which captures “just one part of

the picture, applying only to the population present and captured at both time

points” (Bailey, 2012, p.709). Decennial data are severely limited for segregation

analysis because they fail to capture the volatility in metropolitan housing mar-

kets that occurs over a 10 year period. Apart from issues of data concurrency,
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temporal comparisons su�er other shortcomings as well. As with place-based

comparisons discussed above, temporal comparisons rely on census data, which

are retabulated each year according to changes in population density. This means

that in theory, the segregation levels measured in a particular city could change

over time even if population ratios and spatial allocation remained constant, but

tabulation blocks were redrawn between the two decades (Jakubs and Jakubus,

1981; Massey, 1978b; Reardon and O’Sullivan, 2004; Logan et al., 2014). Finally,

as discussed earlier even in the case of perfect data and stable tabulation units,

there is no statistical framework for assessing whether the di�erence between

two temporal comparisons is meaningful.

Comparisons Over Space-Time

A �nal mode of comparison in the �eld of segregation analytics is that between

places over time. As the most data intensive, this is naturally the smallest of the

three reviewed �elds, with a far more modest collection of work taking up the

challenge. Nevertheless, there are a number of papers that analyze segregation

levels over time in several places, most of which follow a combination of the por-

tions reviewed prior; Purely place-based comparisons are, necessarily, between

point estimates of particular segregation indices. Time-based comparisons are

sometimes focused on ordinal rankings, so they too examine point-estimates and

how they shift rankings between two time periods, facilitating statements such as

“For whites, relatively high levels of isolation have declined substantially over the

decade 2000–2010” (Clark and Östh, 2018). But in other cases, time-based com-

parisons examine the rate of change between two places (i.e. the slope in each

city’s segregation), enabling statements such as “The level of black-white dis-

similarity increased sharply during each decade after 1910” (Massey and Hajnal,

1995). Extending temporal comparisons, researchers making space-time compar-

isons between segregation measures tend to plot the linear trends for each city,

compare cross sectional measures between cities, and compare the trendlines be-

tween cities to facilitate statements such as “From 2000 to 2010... economic seg-

regation increased in 72 CZs [and] larger metro areas tend to be more segregated

than less populous metros” (Acs et al., 2017).

Much like its cousins, space-time comparisons in segregation research also

span the globe (van Ham and Tammaru, 2016) and in a variety of spatial and as-

patial social science contexts (Clark, 1986b; Blackburn et al., 1993; Johnston et al.,

2004; Lichter et al., 2007; Fowler, 2016). But as a methodological amalgamation

of spatial and temporal comparisons, space-time comparisons indeed su�er the

combined �aws of each. This literature, too, makes clear that segregation mea-

surement strategies are fraught with di�culty since, “at a minimum we would
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expect satisfactory measures to provide consistent comparisons across place and

over time” (Blackburn et al., 1993, p.340) but this is not the case. Even with mod-

ern, spatially explicit segregation indices, space-time comparisons are particularly

problematic because each urban system has multiple variables changing in con-

cert. Each city experiences changes in its population structure and urban develop-

ment patterns (and thus, census enumeration units) and there are no methods that

permit researchers to decompose the measured di�erences to understand which
variable is a larger contributor to the results. Nor are there guidelines that help

researchers analyze whether the magnitude in either segregation slopes or point-

estimates are meaningful.

Beyond Ordinal Rankings

While it dominates much of the literature, ordinal comparisons are not the only

strategy employed by researchers to investigate patterns of urban segregation.

Another common strategy is to calculate segregation indices to serve as depen-

dent variables in regression models. For example researchers have examined

whether density (Pendall and Carruthers, 2003), land use regulation (Lens and

Monkkonen, 2016), or population diversity (Johnston et al., 2004) explain di�er-

ing levels of segregation in American cities. Recently, Garcia-López and Moreno-

Monroy (2018) �nd the spatial structure, in the form of mono/polycentricity af-

fects measured income segregation in Brazilian cities. These last two studies are

especially poignant because they begin to highlight the importance of both demo-

graphic structure and spatial structure and their e�ects on the resulting measure-

ments of segregation in an urban area. The literature makes clear that the geomet-

ric size and con�guration of the tabulation units on which segregation measures

rely a�ect the resulting indices signi�cantly (Massey, 1978b; Jakubs and Jakubus,

1981; Wong, 2004; Krupka, 2007; Lee et al., 2008; Clark and Östh, 2018)

Regression approaches that attempt to hold constant certain aspects of spa-

tial structure, like development intensity or polycentricity attempt to rectify this

situation, but since such approaches also fail to account for other aspects of spa-

tial structure like the total size of a city or the shape and con�guration of its

infrastructure networks, housing unit makeup, or neighborhood con�guration, it

is impossible to disentangle the e�ects of spatial structure from aggregate segre-

gation measures. Thus, rather than control for the e�ects of spatial structure, we

instead leverage it to assess how much of the di�erence between two measures of

segregation is attributable to physical layout as opposed to demography.

Our review of the existing work on comparative segregation analytics elu-

cidates two clear gaps in the research. First, when comparing two places, re-

searchers lack a framework for understanding the means through which the dif-
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ference arises. Existing methods fail to provide information about whether the

di�erence between two segregation measures arises from di�erences in the phys-

ical layout of a city (its spatial structure) or the demographic makeup of its popu-

lation (its social composition). In the sections to follow, we address this question

in detail by developing a novel method for decomposing segregation indices into

their spatial and social contributors.

Second, when comparing two places, we lack an inferential framework for un-

derstanding the scale and scope of segregation, and whether di�erences between

two measures are statistically signi�cant. Among a host of other concerns, an in-

ferential framework requires the proper speci�cation of a testable null hypothesis.

In this paper, we do not focus on the development of an inferential framework; to

construct our decomposition measures, however, we do require the formulation

of a counterfactual. Thus, in the proceeding section, we describe a new computa-

tional technique for constructing the counterfactual distributions that we leverage

in our decomposition approach.

3 A Framework for Comparative Segregation Analysis

Our analytical framework uses the following structure. Consider Table 1 which

reports data for a particular city at one point in time. The rows correspond to the

enumeration units (census blocks or tracts), while the second and third columns

are associated with each ethnic/racial group. We assume that na,ti,j is the popula-

tion of unit i ∈ {1, ..., I} of group j ∈ {x, y} in city a and period t. We, usually,

consider group x as being the group of interest (also called the minority group). In

addition, the marginal and total sums are given by

∑
j n

a,t
i,j = na,ti,. ,

∑
i n

a,t
i,j = na,t.,j ,∑

i

∑
j n

a,t
i,j = na,t.,. which are, respectively, the total population of unit i, total city

population of group j and total city population. We also de�ne s̃a,ti,j =
na,t
i,j

na,t
i,.

as the

share of tract i’s population belonging to group j (also called unit composition)

and ŝa,ti,j =
na,t
i,j

na,t
.,j

as the share of the city’s population in group j that resides in

tract i.
We adopt the perspective of Allen et al. (2015) and view segregation as an

assignment process that distributes values to the internal cells of Table 1 subject

to the row and column constraints. In comparing di�erent cities across space, or

the same city over time, it is important to note that not only does the distribution

of the values over the internal cells of the table matter but also the marginal row

and column distributions. Small overall proportions of minority groups can result

in the minority group being unevenly distributed by chance, relative to groups

with larger shares of the city’s population.
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Tract Group x Group y Total

1 na,t1,x na,t1,y na,t1,.

2 na,t2,x na,t2,y na,t2,.
.
.
.

.

.

.

.

.

.

.

.

.

I na,tI,x na,tI,y na,tI,.

Total na,t.,x na,t.,y na,t.,.

Table 1: Generic structure of a dataset of a given city a in the t period.

Spatial Structure

City 1 City 2

Attribute City 1 GA GB

Distribution City 2 GC GD

Table 2: Cross-sectional Decomposition of Segregation Di�erences

Decomposition

We formulate a general structure that supports the comparative analysis of seg-

regation across two di�erent contexts. Depending on the nature of the context,

(spatial, temporal, or spatio-temporal) di�erent formulations arise; the same gen-

eral structure, however, can be used to identify the key dimensions of each com-

parison. Two dimensions are relevant for comparative segregation analysis: the

distribution and spatial structure, which we de�ne as the allocation of people

across the physical space of a study area, which is a function of natural barriers,

transportation networks, aggregation units, urban planning, and other elements.

Cross-sectional Segregation Decomposition

Table 2 provides an illustration of these dimensions for a cross-sectional com-

parison case involving two cities at one point in time. Here interest centers on

comparison of the segregation indices measured for City 1 versus City 2, corre-

sponding to the two segregation indices associated with cases A and D in the table.

For now, we assume that the chosen segregation index is the Gini coe�cient.

The observed di�erence ∆GA,D = GA − GD may be due to di�erences in

spatial structure as well as di�erences in the attribute distributions across the

two cities. To decompose the observed di�erences across these dimensions, we

adopt a Shapley decomposition approach (Shorrocks, 2013). In formal terms, we
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de�ne a function:

∆G = G(S1, A1)−G(S2, A2) (1)

and then de�ne the Shapley contributions of the spatial S and attribute A com-

ponents, given respectively as CS and CA, as:

F (S,A) = CS + CA = ∆G (2)

with:

CS =
1

2
[G(S1, A1)−G(S2, A1) +G(S1, A2)−G(S2, A2)] (3)

and:

CA =
1

2
[G(S1, A1)−G(S1, A2) +G(S2, A1)−G(S2, A2)] . (4)

Focusing on the spatial component,CS , in (3), there are two estimates that are

obtained. The �rst holds the attribute distribution constant, and set to that of City

1, while the spatial structure varies between the two cities. In the second estimate,

spatial structure varies but the attribute distribution is constant and taken from

City 2. The �nal spatial component is taken as the average of these two estimates.

Note that in each of these estimates, there is a counterfactual that is produced and

used against the observed Gini index for a particular City. In the �rst sub-estimate

the counterfactual is G(S2, A1) which calculates the Gini for a realization where

the attribute distribution for City 1 is imposed on the spatial structure of City

2. The di�erence between the Gini from this counterfactual and that from the

observed Gini G(S1, A2) is attributed to changing the spatial structure since it is

the only component that varies between the two cases. In the second estimate,

the counterfactual obtains from imposing the attribute distribution of City 2 on

the spatial structure of City 1. Again, only the spatial structure changes. Below

we return to discuss how these counterfactuals are constructed, here we focus on

the interpretation of the decomposition.

To estimate the Shapley contribution of the attribute distribution, a similar

approach is taken in (4) only now the two estimates obtain from holding the spatial

structure �xed to that in one of the cities, while allowing the attribute distribution

to vary.

Temporal Segregation Decomposition

The comparative analysis of the same city at two points in time can be viewed

in a similar fashion as shown in Table 3. Here the di�erence in the measure of

segregation for this city over time is δGA,D = GA − GD , and now the question

is how much of the change in the city’s segregation is due to changes in spatial
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Spatial Structure

Period 1 Period 2

Attribute Period 1 GA GB

Distribution Period 2 GC GD

Table 3: Temporal Decomposition of Segregation Di�erences

structure versus changes in its attribute distribution over the two periods. The

estimates of the Shapley contributions of the changes in spatial structure and the

changes in the city’s attribute distribution can be obtained using (3) and (4) only

the interpretation changes as the subscript for the arguments to the Gini functions

refer to either time period 1 or time period 2.

Counterfactual Distributions

To generate the counterfactual distributions that are used in the Shapley decom-

position, we �rst estimate the tract-level composition of a particular group in each

city. Using the notation from Table 1 we use the fact that s̃1,ti,j is the unit compo-

sition of group j in tract i of City 1 in the period t.
Next, we form the cumulative distribution functions (CDF) for these values

taken over all the tracts in City 1: F (1)(s̃1,ti,j ), and City 2: F (2)(s̃2,ti,j ). To cre-

ate a counterfactual distribution that imposes the attribute distribution of City

2 on the spatial structure of City 1 we take p1,ti,j = F (1)(s̃1,ti,j ) and then generate

n1,ti,j |attr=2 = F (2)−1(p1,ti,j )n1,ti,. , where attr = 2 means that this population is cal-

culated given the attributes of City 2. This entire process is done for all tracts of

a group in City 1 and the majority group population is given by the di�erence

n1,ti,. − n
1,t
i,j |attr=2. The populations for City 2 are generated analogously.

3

The intuition behind the counterfactuals is as follows. In Table 2, the counter-

factual for case B involves imposition of the unit composition CDF from City 1 on

the spatial structure of City 2. This respects the spatial distribution of unit compo-

sition rankings in City 2, only the level of the unit composition is taken from the

value corresponding to the same rank but in City 1. In other words, the location

of tracts with high minority composition follows the distribution from City 2, but

the value of the minority share is obtained from City 1. For the second counter-

factual, the situation is reversed, where now the value of the minority shares are

3

This approach can be extended assuming counterfactual composition distributions for both

groups (the group of interest and the complementary/majority group). In this case, the counterfac-

tual total population is generated by adding both counterfactual population values.
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obtained from the quantile function for City 2 using the observed values of the

CDF for each tract’s unit share in City 1.

Each counterfactual can then be compared against a di�erent observed case.

In comparing the Gini from case B to case A, we are asking how segregation would

change if the composition of City 1 was to be imposed on the spatial structure of

City 2, instead of City 1’s spatial structure. Comparing case D to case B asks

the question of how segregation in City 2 would change if its unit composition

distribution was replaced with that of City 1.

An alternative way to construct the counterfactual distributions is to use use

the unit shares ŝa,ti,j . In this approach, four distinct CDFs are built for each group

(minority and majority) in each city given by p1,ti,x = F (1,x)(ŝ1,ti,x), p1,ti,y = F (1,y)(ŝ1,ti,y),

p2,ti,x = F (2,x)(ŝ2,ti,x) and p2,ti,y = F (2,y)(ŝ2,ti,y). In this case, we generate each fre-

quency with n1,ti,x|attr=2 = F (2,x)−1(p1,ti,x)n1,t.,x, n1,ti,y|attr=2 = F (2,y)−1(p1,ti,y)n1,t.,y ,

n2,ti,x|attr=1 = F (1,x)−1(p2,ti,x)n2,t.,x and n2,ti,y|attr=1 = F (1,y)−1(p2,ti,y)n2,t.,y .

There are important di�erences between to two approaches to generating the

counterfactual distributions, and these pertain to which marginal totals from table

1 are respected. In the unit composition approach, total tract population values

for the synthetic realizations will respect the observed values, but the tract com-

position, and thus city wide composition, values will di�er from the observed

values. In the second approach, the use of the city share distributions will result

in the same city wide composition between the synthetic and observed popula-

tions, only now the tract/unit values will vary between the synthetic and observed

populations.

4 Illustration

Los Angeles vs. New York: Cross-Sectional comparison in 2010

To Illustrate our cross-sectional comparison approach, we use 2010 census data for

the metropolitan statistical areas (MSAs) of Los Angeles and New York, and focus

on segregation measures for the non-hispanic black population using tract level

data. Figure 1 illustrates how the non-hispanic black population is distributed

di�erently between these two MSAs. The maps in (a) and (c) show how this group

is distributed in space in their respective metropolitan areas in 2010. The maps in

(b) and (c) show the how we would expect non-hispanic blacks to be distributed if

we imposed the population structure of the opposing city, but kept existing spatial

layout the same. Put di�erently, the counterfactual example in Figure 1b shows

how we would expect New York’s non-hispanic black population distribution to

look if we replaced its observed tract composition CDF with that of Los Angeles’.
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Figure 1c reverses the process to replace Los Angeles’ tract composition CDF with

that of New York’s.

In Los Angeles, shown in sub�gure 1a, there is a clear pattern of spatial con-

centration and unevenness in the racial makeup, in that the non-hispanic black

population appears heavily concentrated into a single area of the city. New York,

by contrast, shown in sub�gure 1d, has a unique pattern that is distinct from Los

Angeles, with multiple hotspots of non-hispanic black population, mostly concen-

trated in Kings County, a portion of Queens and, with less intensity, in the Bronx.

In the parlance of regional science, we would argue the structure of segregation

for non-hispanic blacks in Los Angeles appears essentially monocentric whereas

the structure in NYC is clearly polycentric, a curious reversal of their economic

forms. According to their Gini indices, the segregation estimate in Los Angeles

was 0.692 and for New York was 0.798.

Given all of these di�erences, both in terms of spatial context and population

compositions, comparing segregation between the two cities poses a considerable

challenge. The di�erence between Ginis for the two cities (-0.106) could be caused

by a variety of these factors, and we employ the Shapley decomposition approach

described earlier to disentangle them. The �rst thing to consider for the Shapley

decomposition is the cumulative distribution function (CDF) for the black popu-

lation of each city, shown for reference in Figure 2. New York City is home to a

larger population of non-hispanic black residents and, therefore, its distribution

reaches the cumulative value of unity only in the far right corner of the graph,

whereas Los Angeles, represented by the blue curve, has lower values and reaches

unity more rapidly.

To build the counterfactual segregation values to inspect each component in

the Shapley decomposition of Table 2, we applied F (NY )
in the original composi-

tion of Los Angeles and F (LA)
in the original composition of NY and constructed

counterfactual CDFs distribution that are illustrated in Figure 1 through sub�g-

ures 1b and 1c. These “new” simulated distributions are used to �ll the Shapley

decomposition in Table 4:

Spatial Structure

Los Angeles New York

Attribute Los Angeles 0.692 0.655
Distribution New York 0.821 0.798

Table 4: Cross-sectional Decomposition of Segregation Di�erences: Los Angeles

and NY
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(a) Original census tract composition of

Los Angeles (GA)

(b) Counterfactual distribution: NY space

and Los Angeles census tract composition

(GB)

(c) Counterfactual distribution: Los Ange-

les space and NY census tract composition

(GC )

(d) Original census tract composition of

NY (GD)

Figure 1: non-hispanic black population census tract composition in 2010: Cross-

Sectional Comparison.
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Figure 2: Cumulative Density Functions of non-hispanic black population unit-

composition: Cross-Sectional Comparison

The �rst thing to notice in this decomposition, is that di�erences among rows

are considerably smaller than di�erences among columns. From Equations 3 and

4 we estimate that the attribute component CA plays a much more important

role in the segregation di�erence of the two cities since CS = 0.030 and CA =
−0.1364

. In common terms, this result implies that the di�erence in segregation

between Los Angeles and NYC (as measured by the Gini Index) is attributable

primarily to the fact that the cities have di�erent shares of residents that identify

as black, white, and other races. If instead column di�erences were greater than

row di�erences, it would imply that physical layout is the greater contributor to

measured di�erences between the cities.

In addition to the relative magnitudes of these components, it is also interest-

ing to explore their directional e�ects. When holding the attribute distribution

constant, a shift to the spatial structure of New York in place of Los Angeles re-

sults in a lowering of the segregation index. Focusing on the attribute distribution

component, swapping in New York’s attribute distribution for that of Los Angeles

results in an increase in the segregation index, regardless of the spatial structure.

Los Angeles vs. Los Angeles: Temporal comparison between 2010 and 2000

For temporal comparative segregation analysis, we examine the evolution of Los

Angeles between 2000 and 2010 for the same non-hispanic black population. As

reported in Table 5, the di�erence in Gini was -0.040 where, once again, the at-

4

Assuming counterfactual composition distributions for both groups, the di�erences obtained

were not expressive since CS = 0.033 and CA = −0.139.
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tribute component played an important role asCS = −0.003 andCA = −0.037.
5

Spatial Structure

2010 2000

Attribute 2010 0.692 0.694
Distribution 2000 0.728 0.732

Table 5: Temporal Decomposition of Segregation Di�erences in Los Angeles: LA

in 2010 and LA in 2000

This is to be expected, as the amount of change in the spatial structure of a

city over a 10-year period is likely to be dwarfed by demographic change. That

being said, the di�erence in spatial structure between 2000 and 2010, while small,

works to reduce segregation (i.e., case B vs. A, or case D vs. C).

Multiple metropolitan regions across US: Cross-Sectional comparison in 2010

Given this decomposition illustration using the context of LA and NY, one might

be interested in how this behaves for the rest of the country. We extended this

approach to the 50 most populated MSAs of US and decomposed the Gini index

for each of the 1225 pairwise comparisons of these MSAs. The values of Gini for

all the 50 MSAs sorted can be found in Table 6. In this table, Milwaukee appears

the most segregated MSA with the highest Gini of 0.8781 whereas San Jose has

the lowest value of 0.3454.

Figures 3 and 4 present the distribution of each of the Shapley components

along with the point di�erence in segregation, respectively, with a density distri-

bution and a violin plot. In these �gures, the attribute component is clearly more

in�uential than the spatial component overall as it “dominates” the variability of

the point di�erence. The spatial components typically have values close to zero,

whereas the attribute values have considerable variance.

We can look in more detail, however, at each of the comparisons by analyzing

the values themselves for the speci�c MSA pairwise comparisons.
6

We can see

some selected results in Tables 7 and 8 where each of these highlights the 30 most

5

We chose to omit all the details of using the alternative approach of using the counterfactual

distributions with the share of each group of each city. However, we highlight here that the results

were in accordance with the previous sinceCS = −0.044 andCA = −0.061 for the cross-sectional

example between Los Angeles and NY and CS = −0.011 and CA = −0.029 for the temporal

evolution of Los Angeles.

6

Since we have 1225 point estimation, supplementary materials with all comparisons is available

online in this Note: Removed during review to protect author con�dentiality Jupyter Notebook.
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Metro Gini Rank Metro Gini Rank

Milwaukee-Waukesha-West Allis, WI 0.8781 1 Nashville-Davidson–Murfreesboro–Franklin, TN 0.6692 26

Detroit-Warren-Dearborn, MI 0.8681 2 Denver-Aurora-Lakewood, CO 0.6647 27

Cleveland-Elyria, OH 0.8629 3 Richmond, VA 0.6629 28

Chicago-Naperville-Elgin, IL-IN-WI 0.8563 4 Tampa-St. Petersburg-Clearwater, FL 0.6579 29

St. Louis, MO-IL 0.8499 5 Houston-The Woodlands-Sugar Land, TX 0.6373 30

Bu�alo-Cheektowaga-Niagara Falls, NY 0.8305 6 Oklahoma City, OK 0.6366 31

Cincinnati, OH-KY-IN 0.8042 7 Dallas-Fort Worth-Arlington, TX 0.6272 32

New York-Newark-Jersey City, NY-NJ-PA 0.7982 8 San Francisco-Oakland-Hayward, CA 0.6263 33

Pittsburgh, PA 0.7811 9 Minneapolis-St. Paul-Bloomington, MN-WI 0.6195 34

Baltimore-Columbia-Towson, MD 0.7806 10 Charlotte-Concord-Gastonia, NC-SC 0.6159 35

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.7788 11 Virginia Beach-Norfolk-Newport News, VA-NC 0.6033 36

Miami-Fort Lauderdale-West Palm Beach, FL 0.7673 12 San Antonio-New Braunfels, TX 0.5839 37

Indianapolis-Carmel-Anderson, IN 0.7671 13 Orlando-Kissimmee-Sanford, FL 0.5835 38

New Orleans-Metairie, LA 0.7605 14 Providence-Warwick, RI-MA 0.5646 39

Columbus, OH 0.7501 15 Sacramento–Roseville–Arden-Arcade, CA 0.5453 40

Rochester, NY 0.7454 16 Seattle-Tacoma-Bellevue, WA 0.5325 41

Memphis, TN-MS-AR 0.7418 17 Portland-Vancouver-Hillsboro, OR-WA 0.5199 42

Louisville/Je�erson County, KY-IN 0.7295 18 Raleigh, NC 0.5183 43

Boston-Cambridge-Newton, MA-NH 0.7182 19 Austin-Round Rock, TX 0.5046 44

Kansas City, MO-KS 0.7160 20 San Diego-Carlsbad, CA 0.4963 45

Washington-Arlington-Alexandria, DC-VA-MD-WV 0.7133 21 Riverside-San Bernardino-Ontario, CA 0.4414 46

Atlanta-Sandy Springs-Roswell, GA 0.7030 22 Phoenix-Mesa-Scottsdale, AZ 0.4139 47

Hartford-West Hartford-East Hartford, CT 0.7025 23 Las Vegas-Henderson-Paradise, NV 0.3842 48

Los Angeles-Long Beach-Anaheim, CA 0.6917 24 Salt Lake City, UT 0.3634 49

Jacksonville, FL 0.6713 25 San Jose-Sunnyvale-Santa Clara, CA 0.3454 50

Table 6: Ranked Gini values for all 50 MSAs

Figure 3: Shapley Components Densities Plot

Figure 4: Shapley Components Violins Plot
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relevant metropolitan comparison sorted in terms of the magnitude of the spatial

and attribute Shapley component, respectively. The �rst 15 lines of each table

represent the lowest values and the last 15 lines the highest values.

Metro A Metro B Di�erence of Segregation Spatial Attribute

Kansas City, MO-KS Los Angeles-Long Beach-Anaheim, CA 0.0244 -0.0587 0.0830

Jacksonville, FL Los Angeles-Long Beach-Anaheim, CA -0.0203 -0.0537 0.0333

Orlando-Kissimmee-Sanford, FL Los Angeles-Long Beach-Anaheim, CA -0.1082 -0.0513 -0.0569

Kansas City, MO-KS Denver-Aurora-Lakewood, CO 0.0513 -0.0510 0.1023

Jacksonville, FL Providence-Warwick, RI-MA 0.1067 -0.0482 0.1549

New Orleans-Metairie, LA Los Angeles-Long Beach-Anaheim, CA 0.0689 -0.0473 0.1162

Kansas City, MO-KS Dallas-Fort Worth-Arlington, TX 0.0888 -0.0463 0.1352

Jacksonville, FL San Jose-Sunnyvale-Santa Clara, CA 0.3260 -0.0461 0.3720

Kansas City, MO-KS Boston-Cambridge-Newton, MA-NH -0.0022 -0.0460 0.0438

Jacksonville, FL Denver-Aurora-Lakewood, CO 0.0066 -0.0451 0.0517

Kansas City, MO-KS Portland-Vancouver-Hillsboro, OR-WA 0.1961 -0.0448 0.2409

Kansas City, MO-KS Philadelphia-Camden-Wilmington, PA-NJ-DE-MD -0.0628 -0.0447 -0.0181

Orlando-Kissimmee-Sanford, FL Denver-Aurora-Lakewood, CO -0.0812 -0.0447 -0.0365

Jacksonville, FL Las Vegas-Henderson-Paradise, NV 0.2871 -0.0443 0.3314

Orlando-Kissimmee-Sanford, FL San Antonio-New Braunfels, TX -0.0004 -0.0435 0.0431
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Salt Lake City, UT Jacksonville, FL -0.3079 0.0402 -0.3481

Hartford-West Hartford-East Hartford, CT Jacksonville, FL 0.0312 0.0405 -0.0093

San Jose-Sunnyvale-Santa Clara, CA Orlando-Kissimmee-Sanford, FL -0.2381 0.0415 -0.2796

Las Vegas-Henderson-Paradise, NV Orlando-Kissimmee-Sanford, FL -0.1993 0.0421 -0.2414

San Jose-Sunnyvale-Santa Clara, CA Kansas City, MO-KS -0.3707 0.0424 -0.4131

Hartford-West Hartford-East Hartford, CT Kansas City, MO-KS -0.0135 0.0433 -0.0568

Salt Lake City, UT Kansas City, MO-KS -0.3526 0.0443 -0.3969

Raleigh, NC Orlando-Kissimmee-Sanford, FL -0.0652 0.0451 -0.1103

Providence-Warwick, RI-MA Orlando-Kissimmee-Sanford, FL -0.0189 0.0456 -0.0645

Oklahoma City, OK Jacksonville, FL -0.0347 0.0462 -0.0809

Raleigh, NC Jacksonville, FL -0.1530 0.0474 -0.2004

Las Vegas-Henderson-Paradise, NV Kansas City, MO-KS -0.3318 0.0477 -0.3796

Providence-Warwick, RI-MA Kansas City, MO-KS -0.1514 0.0487 -0.2001

Oklahoma City, OK Kansas City, MO-KS -0.0794 0.0508 -0.1302

Raleigh, NC Kansas City, MO-KS -0.1977 0.0526 -0.2503

Table 7: Top 15 metropolitan regions with lowest Shapley spatial component and

top 15 metropolitan regions with highest Shapley spatial component

The metropolitan areas of Kansas and Los Angeles were the pair which had

the lowest spatial component of CS = −0.0587 whereas the highest value was

due to the Raleigh and Kansas of CS = 0.0526. We note that by analyzing each

component in isolation, the signal shall not be considered very important as it

depends exclusively on the order in which the comparison is being decomposed.

Although these are the highlighted di�erences for the spatial component,

it is clear it is the attribute component that it is playing the most important

share in the decomposition, especially for the Raleigh-Kansas comparison where

CA = −0.2503 and it is illustrated in Figure 5
7
. In this �gure, we can check

that the spatial extent is very di�erent but not being able to overcome the di�er-

ence imposed by the di�erent composition that is swapped under the hood of the

7

Since in some cases the magnitude of the composition values of the pairwise comparison is

very di�erent, we chose to present the maps with individual gradient colors to capture the visual

spatial behavior of each MSA.
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counterfactual of each distribution. We can also see that the spatial distribution

is di�erent in terms of the area of the census tracts, but this is not captured in the

construction of the Gini index used here.

Figure 5: non-hispanic black population census tract composition in 2010 for the

highest spatial component (CS = 0.0526) in all pairwise comparisons: Raleigh

vs. Kansas

As mentioned before, in this illustration the attribute component appears

more relevant importance in terms of the magnitude of the decomposition. Ta-

ble 8 presents the principal comparison that generated the lowest values and

highest values, respectively, in the �rst and last lines. It is possible to see that

San Jose-Sunnyvale-Santa Clara, CA, and Detroit-Warren-Dearborn, MI, had the

lowest value of CA = −0.5363 whereas the comparison between Milwaukee-

Waukesha-West Allis, WI and San Jose-Sunnyvale-Santa Clara, CA the highest

value ofCA = 0.5304. To illustrate how this highlighted comparison is expressed

graphically, Figure 6 depicts the former comparison where the two metropolitan

regions have composition magnitudes at a very di�erent scale. San Jose has non-

hispanic black population composition values ranging from 0% to 14% and De-

troit from 0% to 100%. Although the di�erence in their spatial structure is visible

plainly, the contrast between the cities’ demographic structure exceeds dramati-

cally the spatial distinctions between them, resulting in the most extreme case in

the data.

In this data, usually, the Shapley attribute component “dominates” the spatial

one, but it is also of interest to investigate whether there are cases where the spa-

tial component is “more important” (e.g. is larger in absolute magnitude). To ex-

amine these instances, we select from our set comparisons where |CS | > |CA| and

sort the data according to the di�erence given by |CS | − |CA| to check whether

the comparison produced a spatial component more relevant than the attribute
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Metro A Metro B Di�erence of Segregation Spatial Attribute

San Jose-Sunnyvale-Santa Clara, CA Detroit-Warren-Dearborn, MI -0.5227 0.0136 -0.5363

San Jose-Sunnyvale-Santa Clara, CA Chicago-Naperville-Elgin, IL-IN-WI -0.5110 0.0191 -0.5301

San Jose-Sunnyvale-Santa Clara, CA Cleveland-Elyria, OH -0.5176 0.0065 -0.5241

Salt Lake City, UT Milwaukee-Waukesha-West Allis, WI -0.5146 0.0051 -0.5198

San Jose-Sunnyvale-Santa Clara, CA St. Louis, MO-IL -0.5045 0.0147 -0.5193

Salt Lake City, UT Detroit-Warren-Dearborn, MI -0.5046 0.0146 -0.5192

Salt Lake City, UT Chicago-Naperville-Elgin, IL-IN-WI -0.4929 0.0212 -0.5141

Salt Lake City, UT Cleveland-Elyria, OH -0.4995 0.0143 -0.5138

Salt Lake City, UT St. Louis, MO-IL -0.4865 0.0182 -0.5046

Las Vegas-Henderson-Paradise, NV Detroit-Warren-Dearborn, MI -0.4839 0.0148 -0.4987

Las Vegas-Henderson-Paradise, NV Chicago-Naperville-Elgin, IL-IN-WI -0.4722 0.0228 -0.4949

Las Vegas-Henderson-Paradise, NV Cleveland-Elyria, OH -0.4787 0.0131 -0.4919

Las Vegas-Henderson-Paradise, NV St. Louis, MO-IL -0.4657 0.0193 -0.4850

Salt Lake City, UT Bu�alo-Cheektowaga-Niagara Falls, NY -0.4670 0.0063 -0.4733

San Jose-Sunnyvale-Santa Clara, CA New York-Newark-Jersey City, NY-NJ-PA -0.4528 0.0181 -0.4710
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New Orleans-Metairie, LA Las Vegas-Henderson-Paradise, NV 0.3764 -0.0354 0.4118

Rochester, NY Salt Lake City, UT 0.3820 -0.0300 0.4120

Memphis, TN-MS-AR San Jose-Sunnyvale-Santa Clara, CA 0.3964 -0.0156 0.4120

St. Louis, MO-IL Riverside-San Bernardino-Ontario, CA 0.4085 -0.0061 0.4145

Cleveland-Elyria, OH Riverside-San Bernardino-Ontario, CA 0.4215 0.0036 0.4179

Rochester, NY San Jose-Sunnyvale-Santa Clara, CA 0.4001 -0.0215 0.4216

Milwaukee-Waukesha-West Allis, WI Riverside-San Bernardino-Ontario, CA 0.4366 0.0115 0.4251

St. Louis, MO-IL Phoenix-Mesa-Scottsdale, AZ 0.4360 -0.0086 0.4445

New Orleans-Metairie, LA San Jose-Sunnyvale-Santa Clara, CA 0.4152 -0.0316 0.4468

Cleveland-Elyria, OH Phoenix-Mesa-Scottsdale, AZ 0.4490 0.0003 0.4487

Bu�alo-Cheektowaga-Niagara Falls, NY Las Vegas-Henderson-Paradise, NV 0.4463 -0.0049 0.4511

Milwaukee-Waukesha-West Allis, WI Phoenix-Mesa-Scottsdale, AZ 0.4642 0.0081 0.4561

Bu�alo-Cheektowaga-Niagara Falls, NY San Jose-Sunnyvale-Santa Clara, CA 0.4851 -0.0034 0.4885

Milwaukee-Waukesha-West Allis, WI Las Vegas-Henderson-Paradise, NV 0.4939 -0.0032 0.4971

Milwaukee-Waukesha-West Allis, WI San Jose-Sunnyvale-Santa Clara, CA 0.5327 0.0023 0.5304

Table 8: Top 15 metropolitan regions with lowest Shapley attribute component

and top 15 metropolitan regions with highest Shapley attribute component

Figure 6: non-hispanic black population census tract composition in 2010 for the

lowest attribute component (CA = −0.5363) in all pairwise comparisons: San

Jose vs. Detroit
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component. We identify 67 cases where |CS | > |CA| and the highest value of

|CS | − |CA| is illustrated in Figure 7. This �gure depicts the comparison between

Orlando-Kissimmee-Sanford, FL, and Dallas-Fort Worth-Arlington, TX, where the

non-hispanic black population composition is given by the color classes scale. It

is clear that although the spatial structure is di�erent between the two cities, the

demographic composition is very similar, ranging from values of 0% to values

around 95%-96%. In this case, therefore, it is the spatial component which is re-

sponsible for contributing a greater di�erence in the measured Gini index between

the two cities because it is the con�guration of their census tracts that di�ers more

than their population makeup.

Metro A Metro B Spatial Absolute Share Attribute Absolute Share

Bu�alo-Cheektowaga-Niagara Falls, NY Portland-Vancouver-Hillsboro, OR-WA 0.0000 1.0000

Milwaukee-Waukesha-West Allis, WI Seattle-Tacoma-Bellevue, WA 0.0001 0.9999

Nashville-Davidson–Murfreesboro–Franklin, TN St. Louis, MO-IL 0.0006 0.9994

Cleveland-Elyria, OH Phoenix-Mesa-Scottsdale, AZ 0.0007 0.9993

Virginia Beach-Norfolk-Newport News, VA-NC St. Louis, MO-IL 0.0010 0.9990

Louisville/Je�erson County, KY-IN Charlotte-Concord-Gastonia, NC-SC 0.0014 0.9986

Cincinnati, OH-KY-IN San Diego-Carlsbad, CA 0.0014 0.9986

Milwaukee-Waukesha-West Allis, WI Dallas-Fort Worth-Arlington, TX 0.0017 0.9983

Virginia Beach-Norfolk-Newport News, VA-NC Houston-The Woodlands-Sugar Land, TX 0.0018 0.9982

Sacramento–Roseville–Arden-Arcade, CA Dallas-Fort Worth-Arlington, TX 0.0018 0.9982

Indianapolis-Carmel-Anderson, IN Atlanta-Sandy Springs-Roswell, GA 0.0019 0.9981

Las Vegas-Henderson-Paradise, NV Minneapolis-St. Paul-Bloomington, MN-WI 0.0019 0.9981

Cincinnati, OH-KY-IN Charlotte-Concord-Gastonia, NC-SC 0.0020 0.9980

Nashville-Davidson–Murfreesboro–Franklin, TN Baltimore-Columbia-Towson, MD 0.0021 0.9979

Phoenix-Mesa-Scottsdale, AZ Miami-Fort Lauderdale-West Palm Beach, FL 0.0024 0.9976
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Virginia Beach-Norfolk-Newport News, VA-NC Dallas-Fort Worth-Arlington, TX 0.8433 0.1567

Indianapolis-Carmel-Anderson, IN Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.8622 0.1378

New Orleans-Metairie, LA Pittsburgh, PA 0.8732 0.1268

Hartford-West Hartford-East Hartford, CT Nashville-Davidson–Murfreesboro–Franklin, TN 0.8910 0.1090

Boston-Cambridge-Newton, MA-NH Atlanta-Sandy Springs-Roswell, GA 0.8983 0.1017

Orlando-Kissimmee-Sanford, FL Dallas-Fort Worth-Arlington, TX 0.8985 0.1015

Oklahoma City, OK Virginia Beach-Norfolk-Newport News, VA-NC 0.9094 0.0906

Virginia Beach-Norfolk-Newport News, VA-NC San Francisco-Oakland-Hayward, CA 0.9119 0.0881

Tampa-St. Petersburg-Clearwater, FL Los Angeles-Long Beach-Anaheim, CA 0.9264 0.0736

Milwaukee-Waukesha-West Allis, WI Detroit-Warren-Dearborn, MI 0.9367 0.0633

Orlando-Kissimmee-Sanford, FL Minneapolis-St. Paul-Bloomington, MN-WI 0.9374 0.0626

Providence-Warwick, RI-MA Sacramento–Roseville–Arden-Arcade, CA 0.9413 0.0587

Rochester, NY Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 0.9498 0.0502

Memphis, TN-MS-AR Kansas City, MO-KS 0.9501 0.0499

Charlotte-Concord-Gastonia, NC-SC Dallas-Fort Worth-Arlington, TX 0.9805 0.0195

Table 9: Top 15 metropolitan regions with lowest Shapley spatial absolute share

and top 15 metropolitan regions with highest Shapley spatial absolute share

An alternative way to check the relative importance of one component over

another is to inspect its relative absolute value over the sum of both absolute

values. In formal terms, one can use
|CS |

|CS |+|CA| and
|CA|

|CS |+|CA| as the spatial absolute
share and attribute absolute share, respectively, such as presented in Table 9. For

this case, however, the results prove slightly di�erent in the MSAs of the top

comparison, but still indicating that the composition magnitude plays the most

important role in this decomposition.
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Figure 7: non-hispanic black population census tract composition in 2010 for the

highest spatial component over attribute component in absolute values (CS =
−0.039 and CA = −0.004) in all pairwise comparisons: Orlando vs. Dallas

Figure 8: non-hispanic black population census tract composition in 2010 for the

highest spatial absolute share (98.05%) in all pairwise comparisons: Charlotte vs.

Dallas
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Figure 9: non-hispanic black population census tract composition in 2010 for the

lowest spatial absolute share (< 0.01%) in all pairwise comparisons: Bu�alo vs.

Portland

Decomposition under di�erent dimensions of segregation

The Gini index used in the previous section is a measure that assesses the degree of

evenness of a considered group in a given society. However, di�erent dimensions

of segregation can be assessed through di�erent indexes and, according to Massey

and Denton (1988), segregation can be considered to have �ve dimensions: even-

ness, isolation, clustering, concentration and centralization. Therefore, to check

if the interpretation of the results holds for the application, it is of interest to

inspect how some indexes behave for each of these dimensions in the Shapley

decomposition introduced in section 3.

In this robustness inspection, we chose to use the Isolation index (xPx), the

Relative Clustering index (RCL), the Relative Concentration index (RCO) and

the Relative Centralization index (RCE) from (Massey and Denton, 1988). The

results, given by densities of each component for every MSAs pairwise compari-

son in the illustration, are present in Figure 10.

From Figures 10 and 3, the di�erences between the dimensions are clear.

The variance of di�erence of segregation under the evenness and isolation

dimensions can be explained by di�erence in the variance in the attribute compo-

nent, whereas for clustering, concentration and centralization the distributions

are more mixed, but indicate that the spatial component is more important to

these dimensions, since the blue density curve (spatial component density) is

closer to the yellow (di�erence of segregation). The direct reason of this results

can be that the clustering, concentration and centralization dimensions are, by

de�nition, spatial. That is, the spatial context is always taken into considera-

tion in the construction of the chosen index, while for evenness and isolation not
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(a) Isolation (b) Clustering

(c) Concentration (d) Centralization

Figure 10: Density of the Shapley components of all 1225 paiwise comparisons of the

illustation for other dimensions of segregation.

necessarily. In this case, the Gini index and the Isolation index do not take into

consideration space for their calculations and, therefore, space naturally may not

play an important role in the Shapley decomposition.

These results reinforce the inherent di�culty facing researchers working to

develop a comparative segregation framework. This possible sensitivity of how

point di�erence of segregation measures between cities being due to di�erent

source of variations poses a challenging feature to handle that imposes a deeper

analysis.

Conclusion and Discussion

This study is an attempt of addressing comparative segregation analytics with a

novel approach combining counterfactuals distributions and Shapley decomposi-

tions. After covering and discussing a literature review on comparing measures of

segregation through di�erent examples highlighting the challenges and opportu-

nities in the �eld, we formalize our mathematical framework and illustrate it with

an extensive comparative study for the 50 largest Metropolitan Statistical Areas

of US using census tract data.

Our generic approach can be used in any context where the objective is to

perform comparative segregation for either space or time or any combination of

both. However, one of the challenging steps is that the current decomposition

relies on counterfactual distributions of each spatial context under study. In this
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regard, we discuss that this framework can present di�erent ways of imposing the

social composition of one city over another highlighting that the CDF can be used

for either spatial unit composition or city compositions. However, although this

is a point of concern for this kind of analysis, the Shapley components showed to

be relatively robust to the counterfactual approach chosen.

For our illustration using the Gini index, the composition attribute proved to

be more relevant than the space attribute when it is used to compare two di�er-

ent spatial contexts. This characteristic persisted in most of our scenarios when

either comparing Los Angeles versus New York, performing temporal evolution

comparison of Los Angeles or when comparing multiple cities pairwisely. One

of the possible reasons behind this is the nature of Gini. Since this index mea-

sures the degree of unevenness, it can be a�ected intensively by the structure of

attribute composition and, therefore, more a�ected by di�erent shapes of CDFs.

Given that, one of our key �ndings is that the decomposition importance can vary

depending on the index used that can re�ect di�erent dimensions of segregation

such as isolation, clustering, concentration or centralization.

Our empirical examples show that in major American cities, the di�erence in

Gini measures is typically due to di�erences in population structure rather than

physical layout Results from pairwise comparisons among the 50 largest MSAs

the U.S. showed that di�erences between cities measured by segregation indices

that capture the dimensions of evenness and isolation are due typically to variance

in the city’s population structure. For the dimensions of clustering, concentration

and centralization, however, the city’s spatial con�guration usually explains the

di�erence. This could suggest that segregation is primarily driven by migration

or demography in American cities, but this could demonstrate just how weak the

Gini index is for capturing the spatial con�guration of segregation. In future work,

we plan to explore how these patterns vary for a broad collection of spatially ex-

plicit segregation indices with di�ering de�nitions of space, including multiscalar

segregation pro�les (Reardon et al., 2006; Fowler, 2016). We also plan to examine

how our results may di�er when extending our Shapley decomposition approach

to measures of multigroup segregation.

Our illustration also highlights some particularly interesting point compar-

isons, particularly the di�erences revealed in Orlando vs. Dallas, and Charlotte

vs. Dallas. Both of these comparisons are between sprawling southern cities,

suggesting interesting divergence among places that otherwise share a common

history, political culture, and demographic structure. Visually, the di�erence be-

tween Charlotte vs. Dallas appears much larger than Orlando vs. Dallas, sug-

gesting di�erences in Shapley absolute shares may be the more intuitive statistic.

Furthermore, these results raise questions regarding the American South’s legacy

of institutionalized racism, and the way land use policy could help foster more
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integrated cities. If the revealed di�erence between Charlotte and Dallas arises

through land policy and allocation rather than an artifact of each city’s census

tract geometry and topology this will be a critically important �nding because it

implies that governments can use land policy to exercise some degree of control

over prevailing segregation patterns. Such a �nding would have dramatic impli-

cations for the future of urban policy and planning, particularly in the context

of A�rmatively Furthering Fair Housing. Another avenue for further research,

thus, will be to explore approaches that attempt to explain di�erences in Shapley

spatial components by regressing them on elements of urban form, such as the

number, average size, and total population of the city’s enumeration units.

Much still has to be done for comparative segregation. An important exten-

sion to this work is the development of an inferential component to our decom-

positional framework. As we mentioned earlier, we see the question of segrega-

tion measurement as re�ecting a reallocation mechanism, and adopting the boot-

strap approach of Allen et al. (2015) but applied to our counterfactual distributions

seems like a promising direction in this regard. Additionally, other computation-

ally based approaches to inference such as random labeling (Sastre Gutierrez and

Rey, 2013), and random spatial permutations (Anselin, 1995) can be explored to

perform comparative inference given a proper speci�cation of a testable null hy-

pothesis mentioned earlier. Finally, the spatial component of the decompositional

framework can be revisited by drawing upon analytics from exploratory spatial

data analysis (Rey and Arribas-Bel, 2016) and spatial ecology (Fortin and Dale,

2014) with the goal of unmasking deeper insights about the role of spatial struc-

ture in segregation dynamics.
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