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Abstract 

Neighborhood delineation is increasingly relied upon in urban social science research to identify the 

most appropriate spatial unit. However, existing approaches for neighborhood delineation are either 

nonspatial or lead to noncontiguous or overlapping regions. In this paper, we propose the use of max-p-

regions for neighborhood delineation so that the geographic space can be partitioned into a set of 

homogeneous and geographically contiguous neighborhoods. In addition, we developed a new efficient 

algorithm to address the computational challenges associated with solving the max-p-regions so that it 

can be applied for large-scale neighborhood delineation. This new algorithm is implemented in the 

open-source Python Spatial Analysis Library (PySAL). Computational experiments based on both 

simulated and realistic data sets are performed and the results demonstrate its effectiveness and 

efficiency. 

 
 
Introduction 

A fundamental issue in the operationalization of many urban social science investigations is the 
choice of the spatial unit that organizes the socioeconomic data. In research on U.S. urban areas, the 
census tract has been taken as the common denominator as it represents a trade-off in favor of a larger 
number of socioeconomic variables at the cost of coarser spatial resolution relative to the increased 
spatial resolution of block-groups or blocks which come with a concurrent drop in the number of 
socioeconomic variables reported. In the classic approach to geodemographic analysis (e.g., Harris, et al. 
v2005 ) of urban neighborhoods, multivariate clustering algorithms are applied to census data to form 
neighborhood cluster types. The resulting neighborhood types are mapped, however, there is no 
guarantee that neighborhood types are spatially compact or contiguous. As a result, neighborhood types 
can be spatially fragmented which runs counter to the substantive understanding of neighborhoods as 
organizational units for human spatial behavior. 
   
Despite the widespread adoption of tracts as the unit of choice, a number of recent calls have been 
made for more flexible approaches to the definition of neighborhoods supporting urban social science 
research. Clark et al. (2015) have argued persuasively for the notion of “bespoke” neighborhoods that 
can be formed by considering increasing distance buffers around an individual primitive unit (i.e., block 
or block group). The idea is to allow neighborhoods to be defined relative to a focal unit, and thus allow 
for the detection of scale effects reflected in different ethnic groups having neighborhoods of different 
extents. Spielman and Singleton (2015) also argued that the identification of bespoke neighborhoods by 
multivariate clustering can be one solution to the problem of large margins of error in the America 
Community Survey (ACS) data.  
 
Parallel to the work on bespoke neighborhoods, there have been a number of recent advances in the 
longitudinal analysis of neighborhood dynamics in the geodemographic literature. An exemplar of this 
work is seen in Delmelle (2016) where four sets of decadal U.S. Census data (1980, 1990, 2000, 2010) 
are pooled to support the application of a multivariate clustering algorithm to define neighborhood 
typologies. Once the neighborhood types are identified, the resulting clusters from each time period are 
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mapped to delineate the neighborhood that each tract is assigned to. The dynamics come into play 
through a Markov chain based summarization of the transitions of individual tracts across neighborhood 
types over time. The sequence of transitions that each census tract experiences are then used in a 
second clustering exercise to identify a typology of neighborhood change. 
 
The bespoke and longitudinal dynamics approaches towards neighborhood delineation offer a 
richer lens to study the spatial structure of urban areas over ones that treat census tracts and 
neighborhoods as identical. However, longitudinal approaches to neighborhood delineation are 
nonspatial in the sense that the only geographical information about a tract that is employed in the 
clustering is limited to its home metropolitan area. Like the geodemographic approach, the resulting 
neighborhoods are not guaranteed to be spatially contiguous. Its relative or absolute location within the 
urban context plays no formal role in the clustering algorithm. Given that many social attributes are 
spatially autocorrelated, that is, the local attributes affect the occurrence of the same phenomenon in 
neighboring areas, and local multicollinearity arises in many social phenomena, that is, different 
attributes are interdependent with each other (Openshaw and Taylor 1979; Getis and Ord 1992; Anselin 
1995; Garreton and Sanchez 2016), such spatial information should play an explicit role in the clustering 
process and be integrated into the neighborhood delineation process.  While the bespoke approach to 
neighborhood delineation does take the absolute and relative location of a focal tract into account, it 
does not result in a mutually exclusive partition of the tracts, as the resulting neighborhoods overlap. 
 
There have been some clustering algorithms that explicitly account for intra-metropolitan spatial 
information and provide for exhaustive and mutually exclusive definition of neighborhoods. These 
clustering algorithms, generally categorized as regionalization methods, aim to partition the geographic 
space into a set of homogeneous and geographically contiguous regions (Openshaw and Rao 1995; 
Duque et al. 2007; Guo and Wang 2011; Garreton and Sanchez 2016). While the definition of 
neighborhood varies across disciplines, it typically refers to “a contiguous territory defined by a bundle 
of social attributes that distinguish it from surrounding areas” (Spielman and Logan 2013), coinciding 
with the goal of regionalization approaches (Folch and Spielman 2014). However, one of the major 
difficulties in applying regionalization methods to neighborhood delineation is their significant 
computational complexity (Spielman and Logan 2013). In this paper, we focused on one of the most 
widely used regionalization method, max-p-regions (Duque et al. 2012), and proposed a new efficient 
algorithm to address the computational challenges associated with solving it. In the next section, we 
provide a review of existing regionalization approaches with a particular focus on max-p-regions. Next, 
the new solution algorithm is presented. Finally, the proposed approach is applied to identifying 
neighborhood in several simulated datasets and census datasets, highlighting the effectiveness and 
efficiency of the new regionalization approach.  
 
Regionalization 

The need to aggregate spatial units into a set of contiguous regions arise in many social and 

environmental contexts, such as political districting, school districting, police patrol districting, habitat 

delineation, and various zone aggregation for modeling purpose.  Many regionalization algorithms have 

been developed to fulfill such needs. For instance, Duque et al. (2011) formulated a typical 

regionalization problem as a mixed integer programming (MIP) model that can be solved using general 

MIP solver, like GUROBI (Gurobi 2019) or GLPK (GNU 2012). Guo (2008) integrated contiguity constraints 

into hierarchical clustering and developed the regionalization algorithm with dynamically constrained 

agglomerative clustering and partitioning (REDCAP). Li et al. (2014) developed a heuristic method, 
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memory-based randomized greedy and edge reassignment (MERGE), to aggregate spatial units into p 

compact and contiguous regions. A detailed review on regionalization algorithms can be found in Duque 

et al. (2007) and Garreton and Sanchez (2016).  

Most of these regionalization algorithms require a prespecification of the number of regions identified 

(Folch and Spielman 2014; Garreton and Sanchez 2016). For example, the number of identified regions, 

p, is an input parameter for the p-regions model formulated in Duque et al. (2011), p-functional-regions 

formulated in Kim et al. (2013), and p-compact-regions formulated in Li et al. (2014). The users must 

select the level to cut for the hierarchical clustering based method like REDCAP in Guo (2008) and Guo 

and Wang (2011). However, the users rarely know the number of regions a priori. Alternatively, the 

max-p-regions proposed in Duque et al. (2012) allows the users to specify criteria that define a region 

and a regionalization scheme that satisfies the criteria is identified by solving the model. Such 

endogenization of the number of regions based on user-specified criteria make the max-p-regions 

approach ideally suited to identifying neighborhoods for further statistical modeling purpose (Folch and 

Spielman 2014). Here we reviewed max-p-regions model to highlight this and provide basis for the 

solution algorithm developed. Consider the following notation (Duque et al. 2012): 

Parameters 

  𝑖, 𝑗 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡𝑠, 𝑖 ∈ 𝐼 

  𝑘 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠, 𝑘 ∈ 𝐾 

  𝑐 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑖𝑡𝑦 𝑜𝑟𝑑𝑒𝑟 

  𝑑𝑖𝑗 = 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢𝑛𝑖𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 

  𝑙𝑖 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 

  𝑇 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑙 𝑎𝑡 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑠𝑐𝑎𝑙𝑒 

  𝑤𝑖𝑗 = {1, 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑎𝑛𝑑 𝑗 𝑠ℎ𝑎𝑟𝑒 𝑎 𝑏𝑜𝑟𝑑𝑒𝑟 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    

  𝑁𝑖 = {𝑤𝑖𝑗 = 1} 

  𝐹 = 1 + ⌊𝑙𝑜𝑔 𝑙𝑜𝑔 (∑𝑖 ∑𝑗 𝑑𝑖𝑗) ⌋ 

Decision variables: 

  𝑦𝑖𝑗 =

{1, 𝑖𝑓 𝑢𝑛𝑖𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           

  𝑥𝑖
𝑘𝑐 =

{1, 𝑖𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑔𝑖𝑜𝑛 𝑘 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑐  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             

As the number of identified regions is unknown, the potential regions are indexed by 𝑘, which could 

range from 1 to the total number of spatial units. The contiguity order, indexed by 𝑐, is used to ensure 

contiguity within one region. Specifically, each region has only one root unit with a contiguity order 𝑐 =

0. The other units that are assigned to the same region are either adjacent to the root unit, or next to a 

unit that has joined the region with a smaller order number. In addition to the attributes that are used 

to describe dissimilarity between units, the spatially extensive attribute, 𝑙𝑖, defines the size criteria that 
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each region must satisfy, such as the number of population and number of housing units. The number of 

regions becomes endogenous by ensuring each region exceed the threshold, 𝑇, on attribute 𝑙. The 𝑤𝑖𝑗 

defines whether units 𝑖 and 𝑗 are adjacent, and the 𝑁𝑖  is the set of units that are adjacent to unit 𝑖. Given 

this notation, the max-p-regions can be formulated as follows: 
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𝑐

𝑥𝑗
𝑘𝑐 − 1, ∀𝑖, 𝑗, 𝑘                                                                               (6) 

𝑥𝑖
𝑘𝑐 ∈ {0,1}, ∀𝑖, 𝑘, 𝑐                                                                                                            (7) 

𝑦𝑖𝑗 ∈ {0,1}, ∀𝑖, 𝑗                                                                                                                         

The objective, (1), has two main terms with one term maximizing the number of regions, 

∑𝑘 ∑𝑖 𝑥𝑖
𝑘0, and the other term minimizing the total within-region dissimilarity, 

∑𝑖 ∑𝑗 𝑑𝑖𝑗𝑦𝑖𝑗. The number of regions is multiplied by a scaling factor10𝐹  so that the goal of 

maximizing the number of regions always dominates the goal of minimizing the total within-region 

heterogeneity. That is, a solution with larger number of regions will always be preferred over any other 

solutions with smaller number of regions; for solutions with the same number of regions, a solution with 

lower heterogeneity will be preferred. Constraints (2) ensure that each region has at most one root unit. 

Constraints (3) specify that each unit is assigned to exactly one region with one contiguity order. 

Constraints (4) require that unit 𝑖 is assigned to region 𝑘 at contiguity order 𝑐 if and only if one of its 

adjacent unit 𝑗 is assigned to region 𝑘 at order 𝑐 − 1. Constraints (5) ensure that the total value of 

spatially extensive attribute at each region exceeds the prespecified threshold. Constraints (6) link the 

decision variables. Constraints (7) impose binary restrictions on decision variables. 
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While only one spatially extensive attribute was included in this original formulation of max-p-regions, 

Folch and Speilman (2014) generalized it to enable multiple attributes to be the size constraints for 

identified regions. Such size constraints combined with the objective of maximizing the number of 

regions allow for the preservation of as much geographic detail as possible. In addition, the contiguity 

constraints and the other objective of minimizing the within-region heterogeneity ensure that the 

identified region is contiguous and as homogeneous as possible. These characteristics make the max-p-

regions ideally suited for neighborhood delineation. 

However, the max-p-regions is NP-hard and computationally expensive to solve (Duque et al. 2012). The 

largest-sized problem that can be solved optimally using exact MIP solution method is a problem with 16 

units (Duque et al. 2012).  To address its associated computational challenges, Duque et al. (2012) 

developed a two-phase heuristic method with the first phase constructing the feasible solution and the 

second phase improving the solution from the first phase through several different local search 

strategies (greedy, simulated annealing, and tabu search). While this heuristic method makes it 

computationally possible to solve practically sized problems, it takes 10 to 20 hours to get the best 

quality solutions for problems with over 3,000 units (Duque et al. 2012).  There is a clear need to 

develop more efficient solution approaches for the max-p-regions in order to enable its application to 

large-scale neighborhood delineation.  

Solution approach 

Given the computational complexity associated with solving the max-p-regions exactly and heuristically, 

a new solution approach is developed to efficiently solve max-p-regions for large-sized problems. This 

new solution approach is composed of three main stages: region growth, enclave assignment, and local 

search. The first stage focuses on growing regions in such a way that can maximize the number of 

regions; the second stage assigns enclaves using a randomized greedy strategy; and the final stage 

iteratively improves the total within-region heterogeneity through a customized simulated annealing 

that integrates a tabu list. The overall design of the new solution approach for max-p-regions is 

summarized in Figure 1. After initialization, the procedure of growing regions is repeated for MI times as 

significant randomness is involved in the procedure and the resulting partition will be different from run 

to run. Next, the partitions leading to the maximal number of regions are passed to the following 

procedures for enclave assignment and local search. At the end, the partition having the least within-

class heterogeneity is considered to be the best solution identified. Details of the three stages are now 

presented. 

Region growth 

The purpose of the region growth phase is to identify a set of contiguous regions whose total spatially 

extensive attribute exceeds the threshold. The flow chart for region growth is shown in Figure 2. It starts 

by randomly selecting an unassigned unit as the seed unit for a region and then iteratively adds the 

unassigned neighbors of the units in the region until it reaches the threshold or no unassigned neighbor 

can be found. If the region formed fails to reach the threshold, all the units assigned to the region are 

referred to as “enclave” and are added to the enclave set. This process is repeated until all units have 

been either assigned to a region or included in the enclave set. At the end of this phase, we will identify 

a set of contiguous regions whose spatially extensive attribute exceeds the prespecified threshold and a 

set of enclaves. 
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This phase focuses on identifying as many regions as possible and does not account for the attribute 

dissimilarity between units, which are significant design differences from the region growth algorithm 

proposed in Duque et al. (2012) that grows region by iteratively including the neighboring unit that 

minimizes the total within-class dissimilarity. As the number of identified regions is determined in this 

phase and will not be modified in the following two phases, it is important to devise the region growth 

strategy so that the number of regions can be maximized. The computational results in the next section 

show that this new algorithm can identify more compact regions and results in much larger number of 

regions found. 

Enclave assignment 

The goal of enclave assignment phase is to assign the enclaves to the regions identified in region growth 

phase. The flow chart for enclave assignment is shown in Figure 3. It starts by randomly selecting a unit 

in the enclave set and then if any of its neighbors has been assigned to a region, the dissimilarity 

between the enclave and all neighboring regions are computed and the enclave will be randomly 

assigned to one of the neighboring regions with the N smallest dissimilarity. This process is repeated 

until all enclaves have been assigned to a region. At the end of this phase, we will identify a feasible 

solution for the max-p-regions problem where each region satisfies the contiguity and spatial threshold 

constraints and the identified regions are a complete partition for the spatial units.   

This enclave assignment strategy is different from the greedy enclave assignment in Duque et al. (2012) 

where each enclave will be assigned to the neighboring region with the smallest dissimilarity. The 

strategy of randomly choosing one of the best candidates but not necessarily the top candidate is 

generally referred to as randomized greedy algorithm. It was first introduced by Feo and Resende (1995) 

in the Greedy Randomized Adaptive Search Procedure (GRASP) to increase solution diversity while not 

necessarily compromising the solution quality in the initial solution construction. Given such superiority 

to traditional greedy algorithm, this randomized greedy strategy has been applied in various 

regionalization problems (Gonzalez-Ramirez et al. 2011; Cano-Belman et al. 2012; Li et al. 2014). 

Local search 

After identifying a good initial feasible solution in the first two phases, we design a local search 

algorithm to improve the solution’s total within-class heterogeneity by iteratively moving a spatial unit 

from its current region (donor region) to a neighboring region (recipient region) while ensuring the 

solution’s feasibility. The flow chart for the local search algorithm is depicted in Figure 4. This algorithm 

follows the general design of simulated annealing (SA) that simulates the process of heating a material 

and then slowly lowering the temperature to control defect. Duque et al. (2012) has implemented the 

SA to solve the max-p-regions problem. Specifically, given a feasible solution the SA algorithm identifies 

all candidate units that can move to a neighboring region without violating the contiguity and threshold 

constraints, and then randomly selects one candidate unit. If this move can reduce the total 

heterogeneity, it is accepted; otherwise, the nonimproving is accepted with a probability defined by 

Boltzmann’s equation, 𝑝 = 𝑒−∆𝐻/𝑡, where ∆𝐻 is the total heterogeneity change due to this move and 𝑡 

is the current temperature. This process is iterated with 𝑡 gradually decreasing at a cooling rate 𝛼 until 𝑡 

reaches a prespecified value.  

Our new algorithm introduces several significant changes to the original SA algorithm. First, our 

algorithm dynamically updates a list of potential units that can move to a neighboring region without 
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violating the contiguity and threshold constraints, rather than recompute the potential units at each 

iteration. Identifying movable units is computationally intensive because for each unit we need check 

whether losing the unit will break the spatial threshold constraint and whether it will leave the 

remaining units in the region to be unconnected. Our algorithm recomputes the movable units only 

when the list of potential units is empty. Otherwise, the list is updated after each move by removing the 

moved unit, and all the units in the donor and recipient region. This will ensure the rest of units in the 

list are still feasible to move without violating the constraints. Second, once the potential unit is 

selected, only the best possible move is considered for further assessment, rather than any possible 

move. That is, only the neighboring region with the smallest dissimilarity could be the recipient region. 

As the solution diversity is maintained by randomly selecting candidate unit, allowing best move only 

could lead to faster convergence to high-quality solution. Third, a tabu list is integrated in the criteria for 

accepting nonimproving moves. The tabu list that represents a list of banned moves is used in tabu 

search algorithm to discourage the search from coming back to previously visited solution (Glover 1989). 

Li et al. (2014) show that once a nonimproving move is made near the algorithm completion, the search 

bounces among a small set of solutions that consist of reverse moves of previous improving moves. We 

therefore construct the tabu list by iteratively adding the reverse moves of improving moves to prevent 

this and result in faster convergence. A nonimproving move is made only when it is not in the tabu list 

and the Boltzmann’s probability is larger than a random value. The tabu list has a prespeficied length 

limiting the number of moves that can be accommodated in the list, and takes the queue strategy when 

the list is full. Finally, our algorithm allows for termination when all of the previous NC potential moves 

selected are nonimproving, rather than only in the case where the temperature 𝑡 reaches a predefined 

value. This termination condition is consistent with the condition for tabu search in Duque et al. (2012). 

Computational experiments show this termination condition could lead to better-quality solutions.  

In addition to the SA, Duque et al. (2012) also tested tabu search and greedy algorithms for local search. 

They reported that the tabu search can identify the best solutions in most  scenarios but it is much more 

computationally expensive, whereas the simulated annealing and greedy algorithms are 

computationally efficient but lack the capacity to identify the best solutions. This new local search 

algorithm combines the strengths of tabu search and simulated annealing with the aim of identifying 

better-quality solutions and improving computational efficiency.  

Results 

We performed a series of computational experiments to assess the performance of the proposed 

approach for solving the max-p-regions problem. The data sets are retrieved from sample data in the 

ClusterPy library for regionalization research (Duque et al. 2011). The data include four simulated data 

sets, which are regular lattices with 100, 529, 1,024, 2,025 units, and two realistic datasets, which are 58 

counties in California and 3106 connected counties in the U.S. The attribute value to measure the 

dissimilarity 𝑑𝑖𝑗  for the regular lattices is simulated using a spatial autoregressive process with 𝑝 = 0.9, 

whereas the spatial extensive attribute value 𝑙𝑖 is simulated using a uniform distribution of [10, 15]. 

Three different threshold values 𝑇 = 100, 300, and 500 are tested for the simulated data set. The 

attribute dissimilarity 𝑑𝑖𝑗  is also simulated for the counties in California but median household income is 

used for the counties in the U.S. The spatial extensive attribute value 𝑙𝑖 is the  population for the 

counties in California and the number of household units for the counties in the U.S. Three different 

threshold values 𝑇 = 100,000, 300,000, and 500,000 are tested for the two realistic data set. 
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As the number of identified regions is determined in the region growth phase, we first run the new 

region growth algorithm 999 times for each combination of the dataset and threshold to compare the 

number of regions with what is found using the region growth approach in Duque et al. (2012). The 

results are reported in Figure 5, which shows that our new region growth algorithm identified larger 

number of regions for all datasets and thresholds except the dataset of counties in California. This is 

probably because of its small number of spatial units. For example, the number of regions identified by 

our new algorithm for the 2,025 unit regular lattice with 𝑇 = 100 ranges from 198 to 213 during the 999 

runs, whereas that by the approach in Duque et al. (2012) ranges from 187 to 205. For the U.S. counties 

dataset with 𝑇 = 500,000, the number of regions identified by the new algorithm varies from 148 to 

165 during the 999 runs, whereas that by the approach in Duque et al. (2012) ranges from 137 to 154. 

Clearly, our new algorithm generally dominates the approach in Duque et al. (2012) in terms of number 

of regions identified. 

Next, for each partition with the maximum number of regions, we assign enclave using our new 

algorithm to generate initial feasible solutions. While several different local search algorithms are used 

in Duque et al. (2012), tabu search generally identified the best quality solutions. As a result, we only 

compare our local search algorithm with the tabu search in Duque et al. (2012). In order to make the 

results comparable, we run our local search algorithm and tabu search with the same feasible solution 

generated in previous stages. Each of the local search algorithms is run 10 times and the best solution is 

reported. The computational results are reported in Table 1. The column “Total heterogeneity 

reduction” is defined as: 

𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
ℎ(𝑖𝑛𝑖𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − ℎ(𝑓𝑖𝑛𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

ℎ(𝑖𝑛𝑖𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
                       (8) 

where ℎ represents the total within-class heterogeneity to evaluate the improvement of total within-

class heterogeneity by local search algorithms.  For datasets lattice 100, lattice 529, and California 

counties, our new local search algorithm leads to an average of 10.92%, 1.47%, 11.12% more total 

heterogeneity reduction for all three thresholds, respectively. For lattice 1024, our new local search 

algorithm results in 2.19% and 3.34% more total heterogeneity reduction for 𝑇 = 100 and 500, 

respectively. For lattice 2025, it performs 0.18% and 0.39 % better for 𝑇 = 300 and 500, respectively. 

For US counties, tabu search performs better for all three thresholds with 0.72%, 1.62% and 0.55% more 

total heterogeneity reduction. Column “Running time” reports the computational time to run the local 

search algorithm. The tabu search takes more time in all scenarios except one for lattice 100 and one for 

California counties. The speedup of our new local search algorithm compared with tabu search is 

significant for larger data sets. For example, the speedup for lattice 2025 ranges from 12 to 118 and for 

US counties it ranges from 22 to 92. 

Table 1: Computational results of new local search algorithm and tabu search algorithm 

Dataset Threshold Total heterogeneity reduction Running time (seconds) 
  New algorithm Tabu search New algorithm Tabu search 

Lattice 100 100 30.99% 13.12% 0.24 2.67 

Lattice 100 300 12.99% 11.37% 0.17 0.14 

Lattice 100 500 32.32% 19.04% 0.83 4.66 

Lattice 529 100 30.10% 29.66% 2.69 124.24 

Lattice 529 300 23.17% 22.31% 3.09 17.50 
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Lattice 529 500 28.24% 25.12% 6.79 27.01 
Lattice 1024 100 24.58% 22.40% 5.66 53.80 

Lattice 1024 300 25.08% 26.87% 11.18 67.35 

Lattice 1024 500 21.17% 17.82% 7.71 36.77 

Lattice 2025 100 28.00% 28.46% 13.27 1560.19 
Lattice 2025 300 24.12% 23.94% 20.39 240.00 

Lattice 2025 500 25.84% 25.45% 28.90 1262.35 

CA counties 100,000 17.82% 2.59% 0.09 0.04 
CA counties 300,000 36.78% 29.79% 0.13 0.13 

CA counties 500,000 42.64% 31.52% 0.11 0.88 

US counties 100,000 28.54% 29.26% 39.66 3641.65 

US counties 300,000 27.99% 29.62% 39.70 887.40 
US counties 500,000 21.30% 21.85% 72.38 3383.63 

 

Discussion and Conclusions 

The last several decades have borne witness to three important trends in urban social science. The first--

rapidly expanding data resources--is not limited to the urban context. Indeed, in recent years exploding 

volumes of data have led to the rapid development of techniques for both Big Data analysis and the data 

pipelining process. In urban research, however, this trend is also accompanied by (1) an increasing 

topical focus on neighborhoods and the important roles they play in human development and global 

sustainability, and (2) an increasing awareness of linked and multilevel spatial processes and the 

development of analytical techniques used to study them (Raudenbush & Bryk, 2002; Raudenbush 2003; 

Harris 2007; She, Duque, & Ye, 2017; Zhong et al 2019;). In practice, these trends mean that the problem 

size in quantitative geography is increasing by orders of magnitude.  Put differently, researchers today 

seek answers to questions about multiscalar neighborhood growth and change, persistent 

neighborhood inequality in high-performing economies, or neighborhood processes that link together 

places, actors and institutions within a single modeling framework. Addressing these challenges requires 

not only increasingly powerful computational platforms but also more efficient and performant 

implementations of the fundamental algorithms for urban neighborhood research. In this paper, we 

present one such advance. 

The Max-p-regions algorithm is designed to partition a study area into the largest possible set of 

mutually exclusive regions (or neighborhoods) that still satisfy an internal homogeneity constraint. Since 

its inception in 2012 (Duque et al. 2012a), the max-p-regions has been applied in various urban and 

social contexts including urban slum delineation (Duque et al. 2012b), neighborhood dynamics (Rey et 

al. 2011), urban energy assessment (Reyna et al. 2016), regional inequality analysis, and more recently 

has been extended to problems that address network connectivity (She, Duque, & Ye 2017) and 

interregional comparisons (Rey and Sastré-Gutiérrez, 2010).  Despite the important findings advanced 

by these studies, we argue that the current implementation is waning in utility, since it is unable to 

accommodate the massive data requirements inherent in modern urban scholarship. 

 In this paper, we have developed a new solution algorithm for max-p that can substantially reduce its 

computation time, and thus facilitates a much broader set of use-cases and larger volume of input data. 

This means, for instance, that scholars are now able to leverage max-p to address metropolitan-scale 

comparative research in hours or days that would previously take weeks or months. Beyond its 
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substantial improvement in runtime, however, our new algorithm also improves solution quality 

substantially by identifying much larger number of regions that also realize smaller within-region 

heterogeneity in comparison with the original algorithm in Duque et al. (2012). 
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Figure 1: Flow chart of the new solution approach 

 

Figure 2: Flow chart of region growth 

 

Figure 3: Flow chart of enclave assignment 
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Figure 4: Flow chart of local search 
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Figure 5: Distribution of the number of identified regions by the new region growth algorithm and the 

algorithm in Duque et al. (2012) 


