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Abstract
Regionalization, under various guises and descriptions, is a longstanding and pervasive interest of urban studies.
With an increasingly large number of studies on urban place detection in language, behavior, pricing, and
demography, recent critiques of longstanding regional science perspectives on place detection have focused on
the arbitrariness and non-geographical nature of measures of best fit. In this paper, we develop new explicitly-
geographical measures of cluster fit. These hybrid spatial-social measures, called geosilhouettes, are demonstrated
to capture the “core” of geographical clusters in racial data on census blocks in Brooklyn neighborhoods. These new
geosilhouettes are also useful in a variety of boundary analysis and outlier detection uses. These new measures are
defined, demonstrated, and new directions are suggested.
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Introduction

Analysis of spatial community dynamics is a longstanding
domain of regional science & urban geography, and
a burgeoning concern for spatial data science. One
common kind of geography, the “ecologically meaningful”
municipal neighborhood (Drukker et al. 2003) is a prime
geography used in urban data science. Neighborhoods are
often analyzed for their impacts on health (Roberts 1997;
O’Campo et al. 1997; Santos, Chor, and Werneck 2010;
Spielman, Yoo, and Linkletter 2013) crime (Sampson,
Raudenbush, and Earls 1997; Hipp and Boessen 2013)
and life outcomes (Duncan, Brooks-Gunn, and Klebanov
1994). However, since these neighborhoods are often
defined by government or administrative bureaucracies for
convenience’s sake, these neighborhood impacts measure
the effect of this pre-existing geography, not the geography
that might emerge latent in the data (Shelton and Poorthuis
2019).

A different and longstanding mode of analysis focuses
on estimating or “bounding” the neighborhood according to
some specific objective or known phenomenon under study
(Isard 1956). One domain focuses on latent geographies
in demographic data–the study of gemodemographics
(Harris, Sleight, and Webber 2005; Singleton and Longley
2009; Singleton and Spielman 2014). Geodemographic
analysis produces a demographic “typology,” or collection
of interpretable demographic categories, which are mapped
and examined to provide a sense of the social tapestry

of a (typically) urban space. In contrast to this, detecting
latent ecologically-meaningful communities directly from
data is growing more popular in spatial data science. While
serious work “bounding” the neighborhood is not new
(Galster 2001; Spielman and Logan 2013; Spielman and
Folch 2015), the advent of high-quality spatio-temporal
data has made this pursuit more feasible (Anselin and
Williams 2016; Poorthuis 2018; Arribas-Bel and Bakens
2018; Gibbons, Nara, and Appleyard 2018; Wachsmuth
and Weisler 2018). In both geodemographic and latent-
neighborhood approaches, these places can be defined
consistently in terms of a coherent demographic profile,
containing a consistent “bundle” of attributes, behaviors,
interactions, marketing, or social ties.

Latent neighborhoods may be used in a similar context
as prescriptive administrative ones, but can also be
used themselves as indicators of spatial social structure
(Morenoff, Sampson, and Raudenbush 2001; Mikelbank
2011) or to study the perceptions or experiences of these
boundaries (Hipp, Faris, and Boessen 2012; Duncan et
al. 2014). Further, some modes of analysis in this latent
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neighborhood vein provide data-dependent geographic
frames which can characterize urban dynamics, volatility,
and social change (Rey et al. 2011; Duque, Anselin, and
Rey 2012). Regardless, these latent spatial neighborhood
analyses allow endogenously-determined areas to be
identified, characterized, and used in secondary models.

For methods that analyze neighborhoods, it is often
necessary to characterize how “cohesive” a detected
neighborhood is. Traditional measures of cluster cohesion,
or“goodness of fit,” do not take into consideration the
geography of the data being clustered. Although the
analysis of urban “frontiers” or “boundaries” arose early
in urban science (Womble 1951) and has seen consistent
application in epidemiology (Jacquez 1995; Jacquez, S.
Maruca, and Fortin 2000; Lu and Carlin July 2005 2007;
Jacquez, Kaufmann, and Goovaerts 2008) & ecology
(Fortin et al. 1996; Fitzpatrick et al. 2010), recent work
on boundary analysis in demography and urban data
science is sparser (Dean et al. 2018; Dong et al. 2019).
In these contexts, goodness of fit statistics to measure
whether some members, houses, families, or blocks
are distinct from a neighborhood’s general spatial-social
profile; but, the way that this goodness of fit is measured
or operationalized is often entirely non-geographic, and
has no knowledge of spatial proximity, boundaries, or
adjacency (Shelton and Poorthuis 2019). Thus, we develop
a new boundary strength measure inspired by ecological &
epidemiological methods, but one which is appropriate for
urban data science applications like geodemographics and
neighborhood-bounding.

In the following work, we explore the trade-offs involved
between demographic coherence and spatial integrity in
the analysis of urban structure through common geodemo-
graphic or neighborhood-bounding methods. Then, inspired
by the logic of parametric statistical boundary detection
(Womble 1951), we suggest a geographic innovation on
Rousseeuw (1987) called the geosilhouette. We demon-
strate the usefulness of these new measures in both an
empirical-descriptive example, assessing the strength &
direction of racial boundaries between Zillow neighbor-
hoods over Brooklyn Census blocks, and in latent neighbor-
hood/place learning, where they can be used to characterize
the joint spatial-social goodness of fit. Together these new
measures provide novel insight into the structure of spatial
partitions and enable new analyses of the power of bound-
aries in quantitative human geography.

Conceptualizing “goodness” of fit
In general, geodemographic & neighborhood-bounding
exercises use goodness of fit statistics to characterize the
homogeneity or consistency of a given neighborhood or
demographic partitioning. Further, measures of segregation
are used in a similar fashion for empirical analyses of how

thoroughly-mixed (or not) urban spaces are when split by
race, class, or other demographic traits. These ancillary
measures of neighborhood homogeneity or cluster fit are
usually not leveraged directly in theory-driven analyses,
but are instead a part of the barely-visible constellation
of descriptive statistics used in the heuristic analysis of
geographical clusters. To support the wide variety of cluster
analyses, there is a similarly-wide set of goodness of fit
measures.

Silhouette scores, as suggested by Rousseeuw (1987), are
a useful standardized measure of how well an observation
fits its cluster. The silhouette score for an observation
expresses the relationship between an observation, the
other observations in the same cluster, and a counterfactual
“next-best-fit” cluster for that observation. In the original
presentation of the silhouette score, Rousseeuw (1987)
offers an intelligible conceptual motivation for this next-
best fit cluster:

[The next-best-fit cluster] is like the second-
best choice for object i: if it could not
be accommodated into [its current] cluster
A, which cluster B would be the closest
competitor? (p.55)

Thus, for demographic data, an observation’s next-best-fit
cluster is the cluster closest in population profile to that
observation but that does not contain the observation.

The silhouette’s motivating concepts are clear—
“tightness” of each cluster and “separation” between
clusters. Each concept has a distinct term in the formal
statement of the silhouette score for observation i:

s(i) =
min

{
d̄k(i)

}
− d̄c(i)

max{min
{
d̄k(i)

}
, d̄c(i)}

(1)

where d̄m(i) is the average distance from observation i to
other observations j in cluster m, j ̸= i. Here, we use c to
denote a cluster that contains i and k for any cluster that
does not. Taken together, this means that the minimum d̄k(i)
represents the cluster k that does not contain i, but whose
observations tend to be closest to i on average. This is the
“second-best choice” cluster, or the “next-best-fit” cluster
(NBFC), since it does not contain i, but is the most similar
alternative for i. For observation i, we denote the next best
fit cluster k̃i.

Silhouette values range between −1 and 1, with
values close to 1 indicating i is “well-classified” into c.
Conceptually, this occurs when min d̄k(i) is much larger
than d̄c(i), so the quotient in Eq. 1 is nearly 1. Values close
to −1 indicate i is not well-classified into c, since i is much
closer to members of k̃i than it is to other members of c.
For a particularly poor clustering, nearly all i in cluster c
may have negative silhouettes, meaning they are closer to
some other cluster, k̃i, than they are to their own cluster. In
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Figure 1. Zillow neighborhoods (left), with 2010 Census blocks with nonzero population under-laid for Brooklyn, NY. Tracts with
low populations are shown in black on the left figure, and omitted entirely from the remainder of the analysis. The single
most-predominant race in the study area is shown on left.

light of this, the median silhouette score within each group
is often used to characterize the goodness of fit of that group
overall, and the map median characterizes the fit of the map
as a whole. In contemporary applications, silhouettes are
often used to identify an appropriate number of clusters,
as well as being used to identify outlying observations in
clusters, or clusters with exceptionally poor fit. It is in the
second sense, as a measure of the goodness of fit or outlier
detection, that we extend the silhouette.

Data: Neighborhoods & Endogenous Racial
Clusters
In part due to their simplicity, silhouettes have long been
used to detect observations that are not well-grouped with
their cluster. However, for geographic analysis, next-best-fit
scores can be made more informative. As it stands, the next
best fit cluster represents a group to which observation i can
be most plausibly reassigned—the “second-best choice.”
What “best” means is more complex in geographical
analysis, though.

To examine various kinds of geographic “second-best
choice“ cluster assignments, we examine self-reported
race in the 2010 Census blocks across neighborhoods
in Brooklyn, NY using the neighborhood boundaries
provided by Zillow.∗ One view of this data is provided by
Figure 1, which demonstrates the populated census blocks,
neighborhood boundaries, and provides an indication of the
racial composition across Brooklyn blocks. It is important
to note that the neighborhoods shown on the left side
of Figure 1 are different from the official government
neighborhoods maintained by the New York Transit
Authority (NYTA); there are 7 more of the “Zillowhoods”
than the NYTA Neighborhoods and Zillowhoods are
smaller on average. This is likely done to keep the

overall size of communities more consistent in the NYTA
definitions than in the Zillow neighborhoods, which derive
from how properties are marketed. Regardless, both the
NYTA and the Zillow neighborhoods serve here as
exogenously determined neighborhood boundaries for our
purposes, so their relative arbitrariness is not under analysis
here. To contrast with these exogenous neighborhoods, we
also will analyze detected clusters in the racial composition
of census blocks in the 2010 US Census using an aspatial
K-means approach common in geodemographics (Harris,
Sleight, and Webber 2005) and a spatial-hierarchical
agglomerative clustering heuristic based on Ward’s method
(Ward 1963).†

Fragmentation in Urban Regions
Fundamentally, the idea of cluster quality in spatial
cluster analysis implicates two distinct concepts: attribute
coherence, that an observation’s characteristics are similar
to its cluster; and spatial coherence, that the cluster itself
demarcates or delineates a geographically-coherent “zone”
or region of the overall problem frame.‡ To varying degrees,
“real” neighborhoods generally exhibit both demographic
coherence and spatial coherence: they are a “bundle of
spatially-based attributes associated with [a] cluster of
residences” (Galster 2001, p. 2112). Both the “bundle

∗These can be accessed at https://www.zillow.com/howto/api/neighborhood-
boundaries.htm and are licensed as a Creative Commons dataset.
†These results, as well as all estimators developed here, depend on the
efforts of sckit-learn (Pedregosa et al. 2011) and pysal (Rey and
Anselin 2007). They will be made available alongside this manuscript as
free and open software in pysal.
‡This is the intended meaning of “ecologically meaningful” used by
Drukker et al. (2003).
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Figure 2. Demographic clusters in Brooklyn, NY for k-means and spatially-constrained Ward agglomerative clustering.
Fragmentation increases dramatically as the number of clusters increases.

of attributes” and the “spatial cluster” are needed to
characterize a classification’s fitness in a geographical
process.

However, silhouettes (like nearly all goodness of fit mea-
sures for clustering) exclusively measure attribute coher-
ence. This is fine for non-spatial clustering applications,
but is difficult to justify in geographical applications.
Indeed, for the contiguous regions used in the neighborhood
dynamics and neighborhood effects literature, nearly all of
the “second-best choices” constructed for silhouette scores
are actually infeasible choices: i might be nowhere near k̃i
geographically. If i were to move from c to k̃i, both c and
k̃i would cease to be geographically coherent. Since i can
not feasibly be reassigned to k̃i, the counterfactual “second-
best choice” considered by the silhouette score is moot.

Acknowledging this, we can leverage observations’
spatial contexts (in addition to their group memberships) to
extract more meaningful information about neighborhoods
or spatial clusters themselves. Observations on the
boundary of a spatial cluster are the only ones that could
be connected to their next-best-fit spatial cluster if they
were reassigned. All other interior observations require
more than one block to be reassigned in order to be a
feasible, internally-connected cluster. As clusters become
less geographically coherent, the size of their interior
decreases. Visually, the clustering solutions shown in
Figure 2 illustrate this: as the number of clusters increases,
the spatial fragmentation of clusters increases quickly.

Another view of this fragmentation is provided by Figure
3. In this composition plot, the share of all blocks that are
interior to the cluster—those that only touch other blocks
in the same cluster—is represented by the gray area. The

blue fraction shows blocks that are touching their next-
best-fit cluster. These are blocks where the “second-best
choice” assignment is feasible, since the block could be re-
classified to its second-best choice and not affect the spatial
fragmentation in the map. Finally, the red area denotes
the share of blocks that are on the boundary of their own
cluster, but are not near any member of their next-best-fit
cluster. These are the blocks where a “second-best choice”
assignment would affect territorial integrity. In addition to
the shares from latent/discovered neighborhoods, we show
“empirical” fractions of the same quantities: census blocks
in Zillow neighborhoods that touch a neighborhood that is
next-most demographically similar to the block itself, or
that are on the boundary of a neighborhood but do not touch
a neighborhood that is next-most demographically similar.
These are shown by the tickmarks on the right side of the
plot.

Interpreting Figure 3, we can understand a few things.
First, as is mathematically necessary, the share of interior
blocks declines as the number of clusters increases. Second,
despite this increasing fragmentation, the number of blocks
that touch their NBFC is relatively stable as the number
of clusters increases. This occurs quickly for the spatial
agglomerative clusters, but both are remarkably stable at
around k = 20. Third, we see that groups defined without
spatial information (k-means) tend to be much more
fragmented than either the empirical neighborhoods or
the clusters discovered using the explicit spatial clustering
technique. The fraction of blocks that is interior to a
cluster is consistently smaller in the aspatial k-means
map, and clusters are much more dramatically interspersed.
The most spatially-coherent solution seen in the k-means
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Figure 3. Breakdown of census block types based on their boundary & next-best-fit cluster relationships for clusters shown in
Figures 2 & 1.

clustering solutions (that with the smallest k) is still more
fragmented than the most fragmented spatial agglomerative
clustering solution (that with the largest k). Finally, the
empirically-observed breakdowns are quite low; given that
only 7% of the 7729 blocks with non-zero population sit
on the boundary between two Zillow neighborhoods, only
11% of these boundary blocks (approx .08% overall) are
themselves near their next-best-fit clusters. Thus, the level
of spatial cohesion in the Zillow neighborhoods is much
higher than even those detected using the spatially-explicit
clustering method.

Silhouette Scores are not Spatial
Focusing on the empirical case, the interplay between these
NBFCs and the silhouette scores is shown in Figure 4. Note
that the preponderance of silhouette scores are negative for
real-world neighborhoods. This means that, in terms of their
racial composition, census blocks are nearly always more
similar to a different neighborhood than they are to the
neighborhood in which they reside. Together, this suggests
that silhouette scores will always favor “tighter” clusters
in attribute space, without regard for spatial feasibility or
geographical plausibility. Indeed, any realistic urban place-
geography will be considered less “tight” by the silhouette
score, since attribute coherence and geographic coherence
are often opposing objectives. By the same logic, any
spatially-informed clustering method must also be less
“tight.” Neighborhoods (empirical or embedded within the
data) are often much more diverse than the maximally-
homogeneous demographic partition to which the silhouette
refers, so any measure of cluster fit that does not consider
their inherent spatiality will demonstrate this behavior.

Indeed, neighborhood social homogeneity should not be
regarded as a necessarily intrinsically-desirable normative
objective when conducting place detection. Social scientists
have long argued that diverse and socially integrated

neighborhoods provide benefits to residents when they
are able to foster meaningful social exchanges (Joseph,
Chaskin, and Webber 2007; Chaskin and Joseph 2013;
Talen and Koschinsky 2014; Tolsma and Meer 2018).
Further, there is evidence that neighborhood diversity
in the United States is increasing, carrying important
benefits for residents: methods that distill neighborhoods
according to maximum demographic homogeneity may
be overlooking important aspects of they ways that
neighborhoods are experienced by their residents (Logan
2013). As trends towards diversification continue, there
is also recent evidence that neighborhood boundaries are
perceived differently among residents from different social
backgrounds (Hwang 2016), too. Together, this suggests
that neighborhood definitions are tenuous, occasionally
contested, and may be defined by attribute homogeneity,
resident perception, or physical demarcation–and each of
these definitions has unique value in different research
contexts.

While silhouette scores are particularly useful for
identifying spatial configurations of attribute homogeneity,
(such as racial and ethnic enclaves) the point we raise
here is that other definitions are important and useful for
other research questions; building explicitly geographic
measures of fit is necessary to improve the validity of
geographical work on urban regions. Therefore, contra
Shelton and Poorthuis (2019), it is not the designation
of a “best fit” criterion itself that harms the construct
validity of detected places; it is the inflexibility, simplicity,
and arbitrariness of these criteria that makes detected
regions uninteresting or unhelpful. For more interesting
and helpful computational geographies, it is necessary to
improve, develop, and strengthen the conceptualization and
operationalization of these measures of best fit. In short, we
need better geographically-aware measures of cluster fit.
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Figure 4. Sillhouettes & Next-Best-Fit Clusters (NBFCs) for Census Blocks within Zillow neighborhoods in Brooklyn, NY.

Geosilhouettes: Measures of Spatial
Cluster Similarity

Thus, for many forms of empirical urban analysis, it is
necessary to develop better methods to characterize the
local similarity in geographical regions. Further, such a
measure should bridge both the local attribute coherence
in a way that respects or controls for spatial coherence.
While others may examine Figure 2 and observe simple or
straightforward fragmentation in shape (McGarigal et al.
2002), we instead take inspiration from literature on the
statistical analysis of boundaries (Jacquez, Kaufmann, and
Goovaerts 2008); both the geography and demography
matter when defining "best fit" social-spatial regions. While
the percentage measures used in Figure 3 are useful to
describe a single map, it is unclear what the “expected”
or “neutral” value of these percentages are. For some
geographies and attribute distributions, it may be quite
difficult to achieve even 1% NBFC proximity; the “natural”
level of proximity for a given geography is unknown.
Thus, these percentage-style measures are inherently map-
specific and difficult to generalize, and so should only be
used to characterize the relative quality of a solution over a
given map.

Thus, again like silhouettes, social-spatial measures of
cluster fit should be comparable between maps, have some
finite range, and have a theoretically-useful zero point.
Using a measure with a similar structure and meaning to the
silhouette in Eq. 1 is desirable, since silhouettes have a long
history in unsupervised learning, are well-understood, and
are not map-specific. Below, we derive two geosilhouette
specifications. One, the so-called path silhouette, focuses
on joint attribute-spatial affinity through the use of so-called
dissimilarity paths. The other, the boundary silhouette,
restricts the set of each observation’s next-best-fit clusters
to only those clusters that are nearby. That is, the boundary

silhouette constrains the next-best-fit cluster to be a feasible
cluster reassignment (Duque, Church, and Middleton
2011). These two methods will be derived, discussed again
in descriptive & normative/inferential applications for the
analysis of race in Brooklyn Census blocks.

Path Silhouettes

One way to make the silhouette score geographically
aware is to use dissimilarity paths rather than focusing
on attributes alone. A dissimilarity path models the
dissimilarity between two observations, i and j, as a
function of the total dissimilarity between observations
along the path connecting them. Underlying this model of
spatial-social dissimilarity is the recognition that, in order
for i and j to be included in the same geographically-
contiguous cluster c, they must connected by a set
of observations also in c. Thus, a “path” silhouette is
a silhouette score computed using the length of the
dissimilarity path from i to j as the the distance from i to j,
rather than the dissimilarity of i and j’s data directly.

For a path silhouette, first consider the N ×N matrix,
D, containing every pair of distances between observations
i and j. Recalling that dk(i) takes the ith row of D
and computes the average of all j columns in cluster
k, it is sufficient to modify D to account for spatial
structure and use the same method to compute a silhouette
score. to do this, we will build a complement to D that
models the spatial relationships between observations in
the problem. This can be represented by W, an N ×
N spatial affinity matrix. W may be binary, reflecting
a near/not near classification common for describing
adjacency in lattice data, k-nearest neighbor proximity, or
buffer/distance banding proximity. Alternatively, W may
be continuous, formed from a spatial kernel function or a
collection of spatial basis functions (Bradley, Wikle, and
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Figure 5. Neighborhoods and next-best-fit clusters using the path dissimilarity metric. This is the path silhouette analogue of
Figure 4.

Holan 2015). Regardless, W should represent symmetric
spatial relationships between all pairs of observations.

Bringing D and W together, a path silhouette can be
constructed on C1, the first-order cost matrix.

C1 = D ◦W (2)

where ◦ denotes element-wise (Hadamard) matrix products.
The shortest path from each observation to every other
observation can be computed using C1 as the attribute-
weighted spatial adjacency matrix, or cost matrix, to
provide a complete set of dissimilarities used in a silhouette
score. Let this N ×N matrix of all-pairs shortest path
lengths found in C1 be called C. In C, the distance between
i and j is modeled by the sum of the path lengths in attribute
space connecting i and j in geographic space. When W
is complete, then every path in D is shortest due to the
triangle inequality, so C1 = C. Otherwise, C1 expresses
only the first-order path costs between observations, and C
must be constructed using standard all-pairs shortest path
algorithms (e.g. Floyd 1962). §

The path silhouette is then computed using the same
formula as in Eq. 1, using C instead of D. Since an
observation’s next-best-fit cluster (k̃i) on D alone will
often not be the next-best-connected cluster in C, let us
denote the next-best-connected cluster to observation i as
◦
ki to make this clear. The path silhouette expresses the

difference between the average path length from i to j ∈
◦
ki

and i to other j ∈ c.¶ When the path silhouette is close
to 1, it indicates that i has short attribute-weighted paths
to other j ∈ c, so it is either extremely close to j ∈ c,
extremely similar to j ∈ c, or some combination thereof.
Alternatively, path silhouette scores close to −1 indicate

that i is much easier to connect to elements in
◦
ki than to

other elements c; again this can be driven by spatial and/or

social factors. Finally, this method can be used in clustering
problems in other spatial supports as well, so long as the
structure of spatial relationships can be represented in an
appropriate W.

An example of this approach to analyzing cluster quality
can be seen in Figure 5. In this color ramp, the darker purple
areas are those where an observation is classed as not well-
fit to its cluster (since the silhouette is negative), and lighter
yellow are areas where the observation is well fit. This is
in the same style as Figure 4, but shows the path silhouette
versions: the “next best fit” cluster becomes the “next best
connected” cluster, and the silhouettes shown are the path
silhouette variant.

These maps show a few things. First, the geographically
remote neighborhoods in the far north, west, and south of
Brooklyn exhibit strong joint spatial-social cohesion due to
their joint social coherence and geographical remoteness.
Second (and more critically), the empirical neighborhoods
with path silhouettes closer to 1 in Figure 5 tend to remain
together in the spatially-informed clusterings in Figure 6,
even when they are in more central areas of the city. Since
the path silhouette measures joint spatial-social similarity, it
is reasonable that the spatial agglomerative clustering picks
up on this. However, there is no constraint forcing this to

§In the case where W is quite sparse, this may be feasible for large N

using dedicated sparse algorithms. Further, since D is non-negative and
W is connected, then C is guaranteed to be well defined. When C1

has disconnected sub-graphs, no path will exist to connect them, meaning
C will have infinite values. Thus, the connected sub-components of C1

should be analyzed separately if this occurs.
¶It is also possible to define the next-best-connected cluster solely by
the single shortest cost of connection between j ∈ k to i, rather than the
shortest average cost of connection over all j ∈ k as we suggest. However,
this is also not in the spirit of the original average-of-cluster dissimilarities
used by Rousseeuw (1987), and so is elided here.
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occur, so this reinforces the utility of the path silhouette as
an exploratory measure of the local spatial-social coherence
for urban regions.

To illustrate, central Brooklyn has many neighborhoods
with majority-African American populations, as shown
in Figure 1. The aspatial silhouettes shown in Figure
4 show one quite clearly: East Flatbush. Recalling its
atypically-high silhouette scores in Figures 4 and path
silhouettes in 5, this area in the deep center of Brooklyn
is spatially & socially distinctive. This distinctiveness is
recognized regardless of cluster heuristic. In this area, both
the silhouettes and the path silhouettes are high, showing
this is an area with significant demographic homogeneity (a
bundle of similar attributes) that also is spatially-coherent
(this bundle clusters geographically). Notably, though,
high path silhouettes still betray spatial-social similarity
in demographically more-complex neighborhoods, such as
Bushwick, along the northeast Queens-Brooklyn border.
This area is not as strongly self-similar (in that it
is not predominately of a single race in the Census
classifications), but its profile is still distinct from other
nearby neighborhoods. Path silhouettes pick up on this
weaker form of spatial-social similarity, too. However,
this does not stand out in the aspatial silhouettes, again
regardless of the clustering heuristic. The “core” of this
area is assigned its own cluster in the spatial Ward
clustering, and shares the same high path silhouette values
as the empirical neighborhoods. Thus, spatially-informed
measures of cluster fit like the path silhouette can help
us identify what parts of a given cluster are spatially- and
socially-distinctive, while grounding empirical descriptions
of existing or latent regions.

Boundary Silhouettes
While path silhouettes are a novel and potentially-
useful measure of the joint social-spatial proximity of
observations, it too suggests a somewhat unrealistic
“second-best choice” counterfactual: when computing the
“next-best-fit” cluster, the cost of moving i from c to
k is modeled by the average length of paths from i to
j ∈ k that captures both spatial and social distance. But,
neighborhoods, recovered or received, are usually not point-
to-point paths. While we believe the joint geographically-
and data-weighted path lengths is a better model of spatial
reassignment costs than nothing at all, it remains only one
possible model of the actual reassignment costs, which will
be different for every heuristic and clustering objective. So,
we suggest a second, more conservative measure of spatial-
social proximity in clusters & regions: consider only those
observations that might be reassigned without affecting
other assignments. That is, focus on the cluster boundaries.

Consider that for each i, the region k̃i is identified while
computing each silhouette score. In the standard silhouette,

k̃i has no predetermined spatial relationship to i. Often, it is
geographically distant from i. In fact, practically speaking,
i’s next-best-fit cluster may never plausibly contain i
depending on the unique geographical structure of the
clustering problem. Whereas the path silhouette considers
the cost of connecting i and all elements in other k̃i, this
more conservative measure searches only for next-best-fit
clusters that are near i.In this way, we are constructing the
best local alternative cluster for i, instead of the next-best-
fit cluster over the entire map.

In light of this, a boundary silhouette is defined as a
restriction of the standard silhouette score. Reprising the
original silhouette statement from Equation 1:

s(i) =
min

{
d̄k(i)

}
− d̄c(i)

max{min
{
d̄k(i)

}
, d̄c(i)}

(3)

the boundary silhouette must restrict min d̄k(i) to only
those where i could already be reassigned, without affecting
any other j. So, to disqualify distant alternatives, for any k
that is not near i (for any geographical operationalization
of near), d̄k(i) is set arbitrarily high. Then, our target
counterfactual “second-best choice” for i—called the best
local alternative cluster—has three properties: (A) it does
not contain i, (B) it is geographically near i, and (C) it has
the lowest average attribute dissimilarity to i. It is helpful to
denote this as k̂i, since it is often the case that k̂i ̸= k̃i; as
we discussed in the Silhouette Scores are not Spatial section
and show in Figure 4, k̃i is often nowhere near i itself.
These best local alternative clusters are quite restricted. In
fact, depending on the notion of geography used to define
local and the relative scales of the clusters and what is being
clustered, there may only be one or two alternative clusters
near i.∥ It also may be true that k̂i is not even a particularly
good fit for i in attribute space. But, since k̂i is the best
cluster for which i can be reassigned without affecting other
observations, it also is the best feasible second choice.

Using this idea, the boundary silhouette is the silhouette-
style score between i, c, and k̂i, defined only for i on the
boundary. To build the set of observations on the boundary,
first let us use η(i) to mean the set of all observations j
that are local/nearby i. Then, the set of observations on the
boundary are all i for which at least one element of η(i) falls
in a different cluster than i’s cluster, c. This set of boundary
observations is then:

B =
N∪
i

{i ; kj ̸= c ∃ j ∈ η(i)} (4)

∥For observations deep within the interior of a cluster, where there is no
best local alternative, we adopt a similar convention to Rousseeuw (1987)
and set their boundary silhouette to zero.
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Figure 6. Assignments to 15 clusters, silhouettes, and path silhouettes for aspatial k-means and spatial Ward agglomerative
clustering are shown above.

Second, the set of clusters around site i can also be define
in a similar fashion:

Ai = {kj ; kj ̸= c j ∈ η(i)} (5)

Together, these definitions are sufficient to define the
boundary silhouette. The “best local alternative,” the
boundary silhouette’s version of the next best fit cluster,
is the cluster in Ai that is most similar to i. With this
understanding of i’s best local alternative, we can state
the boundary silhouette as a familiar ratio of within- and
between-cluster distances:

sb(i) =
minAi

{
d̄k(i)

}
− d̄c(i)

max
{
minAi{d̄k(i)}, d̄c(i)

} ∀ i ∈ B (6)

This score has the same interpretation as Rousseeuw
(1987)’s silhouette discussed in Section , but measures the
cost of “flipping” i over the border of c and k̂i. In this way,
it is again a silhouette score, in that it only considers the
attribute distance between i & c or i & k̂i, but it uses a
geographical constraint common in spatial clustering: k̂i
should be near i.

Intuitively, when the boundary silhouette is negative, i
is more similar to its best local alternative than it is to its

home cluster. So, i could “cross” the boundary and improve
the attribute coherence of both regions without affecting
the spatial coherence of the regions significantly. At its
widest, k̂i can represents a very general class of “second-
best choice” clusters—regions where the reassignment of i
from c to k̂i yields the best feasible reassignment. Further,
for spatial clustering problems with stronger constraints, a
stronger notion of feasibility can be adopted by imposing
more restrictions on Ai, the set of local alternatives for i.∗∗

Since locality or geographic coherence may only be one of
many relevant constraints on feasible reassignments for i,
this generality means this particular statistic is remarkably
flexible.

The boundary silhouette exhibits an interesting property:
it can be asymmetric for any boundary. For cluster k
and cluster c, the median boundary silhouette score for
observations in k bordering c may not necessarily be equal
to the score for observations in c bordering k. This would
imply that observations in c neighboring k may be more
similar to those in k than they are to their own cluster,

∗∗Common additional constraints in the literature include population
minima or compactness requirements, such as in redistricting contexts.

Prepared using sagej.cls



10 Journal Title XX(X)

Figure 7. Detail of downtown Zillow neighborhoods in Brooklyn, with boundary silhouettes overlaid. Legends on the bottom-right
of each view demonstrate the visible distributions of mapped boundary silhouettes. Basemaps are provided by Stamen Design.

neighbor Boerum Hill Cobble Hill Carroll Gardens Gowanus Park Slope
focal

Boerum Hill 0.000 -0.32 -0.358 0.274 0.122
Cobble Hill 0.627 0 -0.156 0.639 -
Carroll Gardens 0.339 0.152 0 0.710 -
Gowanus -0.071 -0.359 -0.647 0.000 -0.168
Park Slope 0.050 - - 0.390 0

Table 1. Median boundary silhouette values for blocks abutting each cluster in downtown Brooklyn neighborhoods. The rows
record blocks in the “focal” cluster that tough the “neighbor” cluster.

but observations in k neighboring c are still closer to k.
Alternatively, it may be the case that both sides of the
boundary are poorly (or well) classified, indicating the
clusters are poorly (or well) separated.

Practically speaking, when both sides of the boundary
have a positive median boundary silhouette, it means that
the parts of the clusters immediately adjacent to one another
are strongly distinct. When both are negative, it suggests
that the neighborhoods may be misaligned from the true
underlying demographic difference in that locality. When
one is positive and one is negative, the cluster on the
positive side of the boundary tracts could merge with the
tracts on the boundary and improve the local structure of fit

without adjusting the spatial coherence of the two clusters.
Thus, the boundary silhouette asses the local goodness of
fit for a cluster by centering on the relative similarities
between candidate reassignments on the cluster’s boundary.

For an example, we provide an empirical illustration of
the boundary silhouettes in north-central and downtown
Brooklyn in Figures 7 & 8. In addition to the figures,
the median boundary silhouette values for each adjacent
neighborhood pair is provided in Tables 1 & 2. On the left
of each plot, the neighborhoods are labeled On the right, the
boundary silhouettes are shown.

A few strongly asymmetric boundaries are apparent.
Looking at the strongest asymmetry, blocks in Gowanus
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near Carroll gardens are more similar to Carroll Gardens
than the rest of Gowanus, while the tracts in Carroll
Gardens bordering Gowanus are much more similar to
Carroll Gardens. Thus, the demographic profile of Carroll
Gardens is a better demographic fit for those boundary
tracts in Gowanus, so the similarity is directional, and
the two neighborhoods may appear to change gradually
in demographic composition when moving from Gowanus
into Carroll Gardens. This contrasts with a socially
undirected boundary, such as the one between Bedford
Stuyvesant and Bushwick in figure 8. For boundaries with
positive scores on both sides, social characteristics change
remarkably between the boundary and its adjacent cluster.
Blocks in Bushwick immediately north of Broadway
Boulevard, simply could not easily be demographically
passed off as a typical Bedford-Stuyvesant block.

In addition, some neighborhoods may be quite internally
heterogeneous and still have positive boundary silhouettes.
Plainly, a neighborhood may be an arbitrarily-bounded
“bundle” of inchoate and dissimilar attributes, and yet
be distinct from every other bundle nearby. Some
neighborhoods may even have positive and negative
boundaries of nearly equal magnitude. For instance, the
boundaries for Cobble Hill are positive when abutting two
neighborhoods (Boerum Hill & Gowanus) but not a third
(Carroll Gardens). Indeed, an even stronger example of this
is in the north-central detail shown in Figure 8 with medians
in Table 2. The border area between Bedford-Stuyvesant
& Williamsburg is directed towards Williamsburg, but
Williamsburg overall is more heterogeneous than Bedford-
Stuyvesant according to their aspatial silhouette values.
Further, Williamsburg blocks on the Bushwick boundary
are about equally split in their demographic similarity to
Williamsburg or Bushwick. This is despite the fact that
Bushwick is much more demographically cohesive than
Williamsburg as a whole, measured by its median aspatial
silhouette score.

Discussion
Thus, between the path and boundary silhouettes, these
methods introduce spatial structure into the canon of
(aspatial) methods common in spatial data science.
Formally, each statistic does this using a slightly different
spatial structure. Both, however, introduce a formal, direct
notion of geographical proximity or distance directly into
the computation of social distance used to assess the
coherence of a given neighborhood or the goodness of fit
for an urban cluster.

The path silhouette, by mixing together attribute
similarity and spatial proximity, provides a useful
mechanism to measure and assess the joint spatial-
social similarity in a dataset. This strategy shows
increasing promise at the methodological frontiers of urban

data science (Chodrow 2017; Wolf 2019), providing a
comprehensive way to introduce an explicit model of
geographical similarity into the analysis of urban clusters.
The pervasiveness the “cores” identified by path silhouettes
to be clustered in both spatial, aspatial, and exogenously-
determined boundaries suggests that this joint spatial-social
similarity measure is both useful in empirical description
and in unsupervised learning.

The boundary silhouette, similarly introduces spatial
thinking into a classic data science measure, but does
so with a different focus in mind. Instead of specifying
an explicit model for joint spatial-social similarity, this
measure instead aims to quantify how strongly (and in
which direction) does each side of a boundary align? It
provides a novel, explicitly spatial method to examine how
demographic differences coincide (or fail to) in the areas
where regions meet. While this is a post-hoc diagnostic
(rather than a boundary detection method), it can easily be
incorporated into the myriad heuristics that guide cluster
design, too.

It is important to note that the directional structure
inherent in boundary silhouettes is not simply caused
by some neighborhoods being more internally cohesive
than others. These boundary silhouettes are not functions
of the absolute goodness of fit of a given observation,
they indicate the relative goodness of fit comparing an
observation’s home cluster to its local alternatives. The
aspatial silhouette also does not take into account the
proximity of the next-best-fit choice; again, only 16% of
blocks have their next-best-fit neighborhood as their best
local alternative neighborhood. Since it is often the case
that local urban structure can be quite distinct from global
urban patterning (Leckie et al. 2012; Jones et al. 2015;
Harris 2017), this distinction between the relative goodness
of local fit and the global best alternative considered by the
classic silhouette is novel and insightful.

Conclusion
Geosilhouttes, both path and boundary variants, are
immensely useful in their own right for detecting the latent
social-spatial "core" of geographical regions, identifying
the strength & direction of spatial boundaries, and
for understanding the local socio-geographical structure
of cluster fit. There is a large variety of possible
refinements available for these methods, as well as possible
extensions or applications. Moving forward, a classic
statistical perspective could be used to identify the formal
distributional properties of silhouette statistics in conditions
common in urban data science (Anselin and Rey 1991;
Rey, Kang, and Wolf 2018, e.g.). Second, the strongly
scale-driven reasoning embedded in the boundary silhouette
could be used to generalize the analysis of boundaries
between multiple levels, allowing for “local” alternatives at
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Figure 8. Detail of north-central Zillow neighborhoods in Brooklyn, with boundary silhouettes overlaid. Legends on the
bottom-right of each view demonstrate the visible distributions of mapped boundary silhouettes. Basemaps are provided by
Stamen Design.

neighbor Williamsburg Bushwick Bedford Stuyvesant Clinton Hill Crown Heights
focal

Williamsburg 0 -0.096 0.693 0.516 -
Bushwick 0.288 0 0.482 - -
Bedford Stuyvesant -0.478 0.198 0.000 0.006 -0.059
Clinton Hill -0.355 - 0.358 0 0.296
Crown Heights - - 0.077 -0.427 0

Table 2. Median boundary silhouette values for blocks abutting each cluster in north-central Brooklyn neighborhoods. The rows
record blocks in the “focal” cluster that touch the “neighbor” cluster.

a micro (i.e., primitive units such as census blocks/tracks),
meso (individual clusters), or macro (citywide) scale
(Harris 2017, e.g.). Third, these measures could be extended
to spatiotemporal clustering, applying the conceptual logic
of the “second-best choice” to alternatives in time and
space, or considering the trajectories of demographic
classifications using a spatio-temporal distance metric
(Delmelle et al. 2013; Delmelle 2016, e.g.). Fourth, a
common use case of silhouettes is for graphical heuristics
to identify the “optimal” number of clusters in an aspatial
context; the path silhouette should provide a similar method
for geographical clustering problems, and this should be
further studied in future work.

At a more conceptual level, the silhouette provides a
useful formal method to introduce spatial thinking because
Rousseeuw (1987) is so explicit in the operationalization of
the intent of the statistic. Future work should be similarly
explicit in intent. However, our choice to use silhouettes as
the basic structure onto which geographical thinking can
be grafted does not limit the scope of “spatializing” data

science methods. Where possible, enhanced methods for
spatial data science should be developed in this manner:
geographical relationships or structures should be leveraged
directly in the statistic or estimator, rather than entering
in the post hoc analysis of aspatial data science on
geographical processes.

In our execution of this research program, we develop
two new ways of measuring the local “goodness of
fit” for urban clusters. Assessing the local structure of
“neighborhoods,” either detected lying latent within a
dataset or exogenously determined using government or
colloquially-defined boundaries, is a ubiquitous problem in
urban data science. For the path silhouette, demographic
similarity and geographical similarity are combined,
providing a single measure of how cohesive neighborhoods
are, both spatially and socially. For the boundary silhouette,
local thinking is introduced into how observations’ are
assessed for similarity. This provides an indication of
how quickly or dramatically social characteristics change
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between two adjacent urban clusters, and speaks to the
inherently multi-scale structure of urban geography.

Generally speaking, this effort participates in the broader
project of developing new methods for urban spatial
data science. Sometimes, is not enough to conceptual-
ize fundamentally-geographical problems in aspatial struc-
tures; instead, we suggest that introducing spatial thinking
directly into the way a statistic operationalizes its core
measurement is necessary to provide new insights, as we
have done. Further, it is through these better concepts and
operationalizations that better, more meaningful, and more
useful results on the structure of urban society will be
obtained.
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