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Abstract

Dimension reduction is one of the oldest concerns in geographical analysis. Despite signifi-
cant, longstanding attention in geographical problems, recent advances in non-linear techniques
for dimension reduction, called manifold learning, have not been adopted in classic data-intensive
geographical problems. More generally, machine learning methods for geographical problems often
focus more on applying standard machine learning algorithms to geographic data, rather than apply-
ing true “spatially-correlated learning,” in the words of Kohonen. As such, we suggest a general way
to incentivize geographical learning in machine learning algorithms, and link it to many past meth-
ods that introduced geography into statistical techniques. We develop a specific instance of this
by specifying two geographical variants of Isomap, a non-linear dimension reduction, or “manifold
learning,” technique. We also provide a method for assessing what is added by incorporating geog-
raphy and estimate the manifold’s intrinsic geographic scale. To illustrate the concepts and provide
interpretable results, we conducting a dimension reduction on geographical and high-dimensional
structure of social and economic data on Brooklyn, New York. Overall, this paper’s main endeavor–
defining and explaining a way to “geographize” many machine learning methods–yields interesting
and novel results for manifold learning the estimation of intrinsic geographical scale in unsupervised
learning.

1 Introduction: Manifold Learning in Geography

In the current era of Big Data, cloud computing, and adversarial artificial intelligence, quantitative re-

search in nearly every field is turning to computational methods and machine learning techniques to

help model and interpret information in its respective domain. This is equally true of geography, where

machine learning models are applied ever more to multivariate problem domains contextualized by

geographic space. Neighborhood analysis is a subfield of geography where this trend has been partic-

ularly visible (Arribas-Bel 2014; O’Brien et al. 2015; Delmelle 2016; Knaap 2017; Poorthuis and Zook

∗This material is based on work supported by the National Science Foundation under Grant #1762160
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2017; Knaap et al. 2019). Apart from these new methods, however, neighborhoods have both a rich

theoretical tradition and a long history of quantitative analysis, much of which exists outside the realm

of spatial effects or other geographic considerations (Shevky and Bell 1955; Raudenbush and Samp-

son 1999; Sampson et al. 2002; Sampson 2012). For decades, much of the neighborhood research

remained cordoned within disciplinary silos while geographers, sociologists, and computer scientists

each applied the tools of their own trade to distill insights about neighborhoods and the people who

reside within them. Today there is considerably greater exchange among disciplines than in the past,

but the exchange is asymmetrical; sociologists and geographers are increasingly adopting the tools of

computer science (and/or data science, depending on the perspective of the reader) and applying them

to spatial problem domains without regard for the special properties inherent in spatial data (Anselin

2002; LeSage 2014).

While this trend toward greater adoption of machine learning methods among domain scientists is,

in general a positive one, we argue that in the spatial sciences this methodological exchange has been

wanting. Most applications of ML algorithms in neighborhood analysis are naive in the geographical

sense. A widespread practice in the literature is the application of ML methods to reduce multivari-

ate neighborhood data into a smaller, more tractable and interpretable dataset. Such dimensionality

reduction techniques have been common in the urban social sciences for decades, with sociologists

gravitating toward factor analysis in the form of "ecometrics" (Raudenbush and Sampson 1999; O’Brien

et al. 2015) and geographers favoring cluster analysis often termed "geodemographics" (Singleton,

Pavlis, et al. 2016; Knaap et al. 2019) but rarely has either of these traditions attempted to incorporate

spatial information into the modeling frameworks1. Thus while the longevity of the neighborhood analy-

sis literature provides strong evidence for the value of classic and emerging aspatial machine learning

methods, the fact that they lack consideration of geography’s first law suggests there is a wide berth for

improvement (Tobler 1970).

As urban scholars continue to adopt machine learning techniques, we therefore argue there is a

clear need to build a stable bridge between these methods and the traditions of neighborhood research,

from the perspectives of both social theory and geographical analysis. Here, we address a portion of

that gap focused on geographical analysis. Our goals in this paper are threefold; first, we introduce

a new, general method for incorporating geographic information into a large family of ML methods.

Second, we introduce a set of heuristics for understanding the trade-off between geographic information

and multivariate attribute information that we introduce in our framework and demonstrate these trade-

offs in an analysis of social and economic data on Kings County (Brooklyn), New York. Third, we

stimulate discussion regarding the appropriate specification of spatial effects in non-linear models of

urban phenomena, through which we hope to foster increased interdisciplinary exchange and coalesce

efforts among quantitative researchers in disparate fields.

1of course, there are important exceptions to this statement, most notably the field of geographic regionalization. For a
recent review see Knaap et al. 2019
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1.1 Past Explorations & Prior Concerns For Geographic Dimension Reduction

Data-driven geography (Miller and Goodchild 2015) has a long and storied history in geographical anal-

ysis (Arribas-Bel and Reades 2018). While recent dialogues about “big” data have focused mainly

on the problematic representativeness and meaning of large new datasets derived from “incidental”

or “accidental” sensing (Goodchild 2007; Kitchin 2013; Graham and Shelton 2013; Goodchild 2013;

Arribas-Bel 2014; Poorthuis and Zook 2017), the long-standing focus in geography of “big” data pre-

cedes these datasets. Indeed, a critical avenue of geographical research, that of geodemographics

(R. Harris et al. 2005; Singleton and Spielman 2014), is intrinsically a method of dealing with big ge-

ographical data. This realm of quantitative geography inherits from the “social area analysis” tradition

in sociology (Park and Burgess 1925; Shevky and Bell 1955; Palm and Caruso 1972; Raudenbush

and Sampson 1999).2 In this realm of analysis, large multidimensional census data is reduced into

a few main factors model of “latent” characteristics. These latent characteristics are then analyzed,

mapped, or otherwise explored to understand the “latent” spatial structure in demographic data. While

these practices have routinely been scrutinized for their geographical instability and their occasionally

unintuitive summaries of high-dimensional structure (Bell and Greer 1962; Berry 1971; Johnston 1971;

Giggs and Mather 1975; Voas and Williamson 2001), it remains true that dimensionality reduction for

complex, non-linear relationships in geographical data is an old problem indeed.

The problem arises elsewhere by different names in different areas of geographical science. Since

Openshaw (1994), a geographical interest in dimensionality reduction using the Self-Organizing Map

(Kohonen 1990) has sought to reduce high-dimensional structures in geographical processes and

proven extensively useful. In an exploratory mode of analysis, the Self-Organizing Map and its variants

(Bação et al. 2004; Henriques, Bação, et al. 2012; Henriques, Lobo, et al. 2012; Xu et al. 2017; Clark

et al. 2017) have been consistently used in the analysis of complex, non-linear demographic relation-

ships (Skupin and Fabrikant 2003; Agarwal and Skupin 2008; Pearson and Cooper 2012; Arribas-Bel,

Nijkamp, et al. 2011; Delmelle et al. 2013; Spielman and Logan 2013; Psyllidis et al. 2018). An-

other consistent interest is the use of Self-Organizing map for data-driven map reprojection (Skupin

2003; Henriques, Bação, et al. 2009; Skupin and Esperbé 2011), which exploits the Self-Organizing

Map’s distinctive properties in order to build new or better map projections and transformations. This

is because a distinctive property of a Self-Organizing Map is that its transformations are “topology-

preserving,” meaning that the fundamental neighbor relationships between observations are preserved

by the SOM during learning. Data can be warped, its visual or apparent structural properties adjusted.

But, Self-Organizing Maps are trained explicitly using “spatially-correlated learning” (Kohonen 1990,

p. 1467), so the position of a point in the lower-dimensional embedding of the data incorporates the

learning of surrounding points as well. These maps then allow for the exploration of complex multi-

dimensional relationships in a two-dimensional grid amenable to exploratory visualization (Lobo et al.

2012; Spielman and Logan 2013) or clustering (Skupin and Fabrikant 2003; Psyllidis et al. 2018).

2A recent comprehensive review is provided by Knaap et al. (2019), see also Abbott (1997).
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2 Understanding Manifold Learning

Building on this, manifold learning is a domain of non-linear dimension reduction research. Manifold

learners condense complex non-linear multivariate relationships through to a lower-dimensional “em-

bedding” of the data. The “manifold” is a surface defined in the high-dimensional space by multiple

variables; it may be folded, twisted, or otherwise non-linear. These geometric properties reflect the

intrinsic non-linearity of multi-dimensional geographically- and internally-dependent data. As a subtype

of dimension reduction, manifold learning methods focus more on preserving the properties of this sur-

face through to low dimension, rather than finding an optimal dimension reduction of the dataset when

treated as individual points. This has profound implications for exploratory data analysis in geography,

where non-linearities in both data and geographic structure abound.

This manifold perspective has increased in popularity dramatically in the past twenty years. Indeed,

Skupin and Fabrikant (2003)’s contrast of the “discrete object” conceptualization of classical dimension

reduction methods and “field conceptualization” self-organizing maps presages the contemporary ten-

sion between “local” and “global” structure underlying the manifold and general dimension reduction

split:

The rationale behind these so-called manifold learners is that they attempt to retain the

local structure of the data, that is, the small pairwise distances between the datapoints, in

the latent space. (van der Maaten 2009, p.384)3

By this notion of “local” structure, van der Maaten (2009) means that observations that are extremely

similar in high dimension should remain near one another in low dimension. Here, “nearness” might

be measured by the raw distances between observations, by the set of “most similar” observations, or

by defining a topological “neighborhood” as Kohonen (1990) does. Further, we demonstrate what this

means, too, in the following sections.

Thus, manifold learning algorithms are a type of dimensionality reduction method. They focus on en-

suring that observations that are similar in high dimension remain similar in low dimension, rather than

attempting to find the optimal low-dimensional representation that preserves the (dis)similarities be-

tween observations. Most manifold learning algorithms can be encouraged to use “spatially-correlated

learning” using a variety of heuristics through a method known as “kernel averaging.” We discuss two

of these heuristics in the following sections for Isomap, a manifold learning technique proposed by

Tenenbaum et al. (2000).

2.1 How Isomap Learns Manifolds

While Skupin and Fabrikant (2003)’s perspective on representation in manifold learning methods was in-

deed prescient, Tenenbaum et al. (2000)’s Isomap was proposed shortly before its publication. Isomap

extends and improves upon classical metric Multidimensional Scaling (Mead 1992), resolving many

3See also page 2 of McInnes et al. (2018), that “[d]imension reduction algorithms tend to fall into two categories; those
that seek to preserve the distance structure within the data and those that favor the preservation of local distances over global
distance.”
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of Skupin and Fabrikant (2003)’s concerns, yet has not received significant attention in dimensional-

ity reduction for geographical analysis.4 Thus, to explain how we incorporate geography into manifold

learning using Isomap, we first explain how Multidimensional Scaling operates. Then, we explain how

classical Isomap improves significantly upon Multidimensional Scaling, and note why Isomap is such

a powerful extension of Multidimensional Scaling. Finally, we discuss how Isomap can be generalized

further to respect the geographical structure of high-dimensional manifolds while becoming Isomap in

the limit.

2.1.1 Understanding Multidimensional Scaling

Multidimensional Scaling (MDS) is one of the longest-standing methods in dimension reduction (Torg-

erson 1952; Mead 1992; Borg and Groenen 2005). MDS has many variants, but its most basic form

reduces a matrix X recording P features at N sites into a new “embedding” matrix Z, with N observa-

tions over Pz features, with Pz < P. To do this, many MDS algorithms minimize stress, s, a function of

the distances between pairs of points in the data X and those in the lower-dimensional embedding, Z:

min s =

√√√√ N

∑
i<j

[
d(xi, xj)− d(zi, zj)

]2

d(xi, xj)2 (1)

where d is a distance metric. In addition, non-metric MDS generalizes this procedure to allow for

non-metric d-functions that satisfy weaker conditions (Kruskal 1964b; Kruskal 1964a). When stress

is minimized, observations that are dissimilar (or, far away from one another in high dimension) in X
remain dissimilar in the lower-dimensional embedding, Z. When looking for a two-dimensional em-

bedding for Z, this means that observations that are dissimilar in X are far apart in a scatterplot of Z.

Thus, MDS is often explained as the best-fit distance-preserving projection of the original data into low

dimension.5

2.2 Understanding Isomap

In the original proposal of Isomap, Tenenbaum et al. (2000) discuss dissatisfactions with MDS specifi-

cally (and linear dimension reduction methods more generally). One incisive critique from Tenenbaum

et al. (2000) is that standard Euclidean distances between observations (d(xj, xj)) may not be a good

measure of the true dissimilarity of i and j in high dimension. For an explanation, consult Figure 1,

reprised from Tenenbaum et al. (2000). In this example, a “global” view of the data may indicate that

two points are nearby. However, the two observations exist on very different parts of a non-linear

high-dimensional manifold. Using standard Euclidean distance in this case would “shortcut” the true

non-linear relationship.

4This is despite Jenkins and Matari (2004)’s initial exploration into adding spatio-temporal constraints to Isomap.
5Indeed, technical documentation for scikit-learn (Pedregosa et al. 2011) goes as far to suggest that MDS on a spher-

ical dataset provides results analogous to an Azimuthal Equidistant Map Projection.
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Figure 1: Tenenbaum et al. (2000) illustrate Euclidean “shortcuts” in high dimensions. In Panel A, the
blue distance is drawn along the surface of the data in high-dimension. The dashed blue line connecting
the two highlighted points is the Euclidean distance between the two points. The Euclidean distance
involves a jump that “shortcuts” the manifold altogether, and would suggest the two points are much
closer than they would otherwise be if the manifold were known. Panel B shows the distance along the
manifold as modeled using “short hops” between similar points, which respects the manifold’s curvature.
Finally, Panel C compares the true manifold distance (solid blue) and the “short hop” (red) path length
along the manifold after building the Isomap embedding.

To resolve this, Tenenbaum et al. (2000) use local thinking to provide a better model of dissimilarity.

The dissimilarity of observations in high dimension might be modeled better by “adding up a sequence

of ‘short hops’ between neighboring points.” (p. 2320). In Figure 1, this “sequence of short hops” is

the red path defined in Panels B and C. This problem of finding a path along a non-linear manifold is

the manifold shortest path problem, and involves discovering the shortest path along an unknown high-

dimensional surface. The use of these path lengths is central to the Isomap method of manifold learning

and dimensionality reduction, and will play a critical role in introducing geography into the method.

For standard Isomap, the “short hops” are first used to build a matrix of the distances between each

observation and k of its most similar peers (C0). Then, this is used to construct a matrix of the shortest

path between all pairs of observations (C) and MDS applied. In practice, “short hops” are moves along

the k-nearest neighbor graph for X. This means that, for Isomap, d(xi, xj) is the length of the shortest

path connecting i and j in a k-nearest neighbor graph.6 For observation xi, its k-nearest neighbors are

those k observations most similar to i itself, and thus are the “closest” k observations in high dimension

according to d; the k-nearest neighbor graph is the union of all of these k-nearest connections. For

clarity, let us call this k-nearest neighbor graph over X the k-similarity graph, to avoid confusing the

notions of geographical and feature similarity.7

Once the distance of every “short hop” is recorded in C0, an all-pairs shortest path algorithm (Floyd

1962) is used to build the full cost matrix C for standard MDS (Torgerson 1952). Like in the case of

6The actual dissimilarity function, d, may be any statistical distance, but common metrics include Levenshtein or Minkowski
distances.

7The k-similarity graph can be symmetrized by intersection, such that observations i and j are mutually k-similar if and only
if xi is k-similar to xj and xj is k-similar to xi. It can also be symmetrized by union, or left un-symmetrized. If symmetrized,
solutions can be found using metric Multidimensional Scaling. Otherwise, solutions are only admissible using non-metric
Multidimensional Scaling. Practically, it is simplest to use union symmetrization, as this lets jumps be made forwards and
backwards, which retains the original concept of a “short hop” from Tenenbaum et al. (2000).
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classic Multidimensional Scaling, points that are near one another in high dimension will still be near

one another in a scatterplot of Z, so long as there is a short path connecting them along the manifold.

This ensures that distances in high dimension follow non-linear structures, since the higher-dimensional

relationships “may be highly folded, twisted, or curved.” Tenenbaum et al. (2000, p. 2321) As such,

Isomap avoids the short-cutting shown in Figure 1, and instead provides a useful model of non-linear

dissimilarity using local thinking. It uses the k-similarity graph as a “greedy” approach to model the

manifold shortest path. It is greedy in that it prefers paths with short link lengths, not the shortest total

distance, but it still solves for the shortest total path length along the k-similarity graph. In practice,

this means that the k parameter must be sufficiently large to contain paths that are close to the optimal

manifold shortest path length, but small enough to avoid taking “shortcuts” through the manifold.

3 A General Strategy for Building Geographical Machine Learners

Geographical information provides another way to improve manifold learning, as it both expresses and

constrains variation in data. Models of complex geographical relationships have tended towards the

analysis of the interdependent and spatially-contingent structure of geographic processes, recognizing

that everything is related to everything else (Tobler 1970). This geographical autocorrelation can affect

the amount of information inherent in a single variable, serving as an intrinsic dimension-reducing factor

(Griffith 2005; Griffith 2013). Further, many spatial relationships are inherently local : they may vary

depending on the site (Fotheringham 1997). Finally, “exogenous” effects themselves can be interact

with spatial structure across a variety of geographical process models in a multitude of ways, such

as direct & indirect effects in simultaneous autoregressive models (LeSage and Pace 2009, §2.7.1) or

nonstationarity in multilevel, (Duncan et al. 1998; Dong and R. Harris 2015), spatial interaction (LeSage

and Llano 2013), or random effects models (Murakami and Griffith 2015). Thus, geography is full of

studies on the nature of non-linear, intrinsically lower-dimensional dependent data.

In many geographical modeling applications, the relationship between each observation in a geo-

graphical process is measured by an affinity or a distance measure relating all pairs of sites (LeSage

2014). Conceptually, each “instance” of a spatial relationship is modelled by this affinity or distance,

and the structural effect of this linkage is estimated. In geographically-weighted regression, the “in-

stance” is a site at which a local model is estimated, and the learned effects (β) change depending on

the bandwidth parameter and kernel function (K(C|θ)). In a mixed regressive-autoregressive spatial

model (a “spatial lag” model (Anselin 1988)), the “instance” is a single site, and the learned effects (β)

change depending on the autoregressive parameter and the spatial filter, ((I − ρW)−1). In both cases,

the “spatializing” part (the kernel or the spatial filter, respectively) is an entire N × N matrix modeling

the interaction between sites.8

Many machine learning problems are directly based on kernels, too (Hofmann et al. 2008). The so-

called “kernel trick” is a long-standing and influential realization used in models of stochastic processes

8In geographical problems, both kernels and distances are common. Schölkopf (2001) provides a now well-used method
to convert distances into kernels, so the distinction does not pose a challenge here.
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(for perspective, see Newton 2002, p. 364). Kernel methods in machine learning use direct pairwise

relationships between observations to learn functional structure. Thus, just like many geographical

problems, effects may not be stationary, are explicitly developed from links between datapoints, and

may be highly non-linear. Indeed, nearly any linear or non-linear dimension reduction method can

be solved using a non-linear Kernel Principal Components Analysis over a suitable kernel, including

both MDS (Williams 2001) and Isomap (Ghodsi 2006). Thus, any geographical manifold learning is

also implicitly informed by extensive past work on the spectral properties of geographical processes

(Tobler 1969; Boots 1985; Griffith 1996; Griffith 2008). Beyond spectral concerns, the generality of

kernel methods for instance-based learning suggests that we can combine spatial and feature kernels

together in a single kernel for geographical machine learning.

Many existing applications of machine learning in geography involve kernel problems, but have not

directly applied kernel mixing methods. At its simplest, mixing kernels involves computing a separate

feature kernel and geographical kernel. For i = 1, 2, . . . , N observations of P covariates collected

in a design matrix X, let the site i have the P-length feature vector xi and the geographical position

si. Then, kernel mixing for geographical problems uses the fact that kernels can be combined using

averages (Belanche and Tosi 2013). To combine a spatial kernel g with a feature kernel f , we use the

following geometric mean:

Kij =
√
( f (xi, xj) ∗ g(si, sj)) (2)

Geometric kernel averages are desirable for a few reasons. First, for problems where strict constraints

are required (e.g. Yuan et al. 2015), this ensures that zero-affinity elements propagate to the final ker-

nel; linear means do not do this. Second, standard geometric means are simpler than linear weighted

means because they do not require additional parameters. Third, geometric means retain the interpre-

tation of weighting feature similarity by geographical similarity, rather than providing a linear trade-off

between feature and geographical similarity.

This “weighting” of feature affinity by geographic structure is conceptually similar to many so-called

“local” methods in geography (Fotheringham 1997) that discount or ignore distant structural relation-

ships (Wolf, Oshan, et al. 2018). For example, geographically-weighted regression (Fotheringham et

al. 2002) uses geographical weights directly in the computation of regression parameter covariance

matrices. This realization has further profound implications for dimensionality reduction, classification,

and unsupervised learning applications (Brunsdon et al. 2007; Mason and Jacobson 2007; P. Harris et

al. 2011), where path-breaking work has also long recognized the relevance of “neighborhood model[s]

for each location” (Gahegan 2000, p. 133). We use this realization of kernel mixing to power a gen-

eralization of Isomap below, but any machine learning problem for geographical data can made to use

explicit “geographical learning” using kernel mixing.

3.1 Geographying Isomap

For manifold learning, it is difficult to strike a balance between learning “local” structure versus the

“global” structure of the data. As discussed above, Isomap focuses on “local” structures in data through

8



DRAFT

using k-similarity graph paths to model non-linear manifold distances. For geographical data, proximity

provides an additional, distinct measure of non-linear “local” structure. Observations that have similar

traits and are near one another geographically are close in both a geographical and feature-space

sense. Thus, the way Isomap models manifold shortest paths using k-similarity graphs can be improved

by relying on the intrinsic dimension reduction caused by geographical dependence.

Inspired by Church (2018)’s heuristic to simplify a family of facility location problems, we propose a

kernel-mixing heuristic like that in Equation 2. This encourages “short hops” along the high-dimensional

data surface that make geographical sense. While we can make specifications to forcibly constrain the

learning to be local (e.g. Jenkins and Matari 2004; Yuan et al. 2015), it is more useful to express

this as a smooth continuum of possible transformations that exist between the classical method and a

geographically-informed technique. With this, a “Geographical Isomap” algorithm is available:

3.1.1 Geographical Isomap

1. For all pairs of observations (i, j),

(a) compute the geographical distance between sites si and sj using a distance metric ds and

store this in Ds.

(b) compute the feature dissimilarity between xi and xj and using a dissimilarity metric dX and

store this in DX.

2. Combine the information about geographical distance in Ds with information about feature dis-

similarity in DX to get D, the hybrid distance matrix:

D = DX ∗ Ds (3)

3. Construct a k-similarity graph using D. Retain the cost of each “short hop” in C0, the first-order

path cost matrix.

4. Compute the all-pairs shortest path distances for first-order path cost matrix C0, and call this

matrix of all-pairs path lengths C. Each path cost in this matrix is the length of a “hybrid manifold

path” on D.

5. Use an appropriate MDS variant to obtain an embedding in low dimension with minimal deforma-

tion of distances in C.

3.2 Specifying Two Geographical Isomap Approaches

Together, these steps provide a very flexible, general statement for geographical manifold learning.

Since ds and dX can be specified in a flexible manner, the method can be tuned to provide an ap-

propriate spatial and feature metric for many different problem types. Flexibility is desirable because
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geographical problems are complex and geographic representations are different depending on con-

text. This level of flexibility, however, can also lead to significant challenges when conducting dimension

reduction, as Wattenberg et al. (2016) illustrate for another flexible manifold learning method. Further,

because steps 1 & 2 vary only in their inclusion of geographic information, specifying ds well will ensure

that Isomap is a special case of geographical Isomap. Just as the solution to the problem defined by

Church (2018) becomes feasible and optimal to a standard warehouse location problem at a sufficient

distance threshold or a geographically-weighted method approaches an aspatial technique as the band-

width increases (Fotheringham et al. 2002), there are many specifications for ds that have this limiting

property. Thus, we provide a few recommended specifications for geographical and feature similarity,

and illustrate how these specifications relate to the standard Isomap procedure.

3.2.1 Using the Tobler Heuristic: Locally-Constrained Isomap

The first specification is directly inspired by Church (2018)’s use of distance banding methods to reduce

a problem size. Recall that Isomap models the manifold distances between observations using shortest

paths on the k-similarity graph. This matrix, C0, records the distances of the “short hops” between

similar observations. Then, the all-pairs shortest paths on C0 are computed and their costs are stored in

C. MDS is used on C to obtain the low-dimension coordinates. This approach is “greedy” in the sense

that it suggests that manifold shortest paths are well-modelled by paths restricted to the k-shortest

inbound or outbound links at each node, which is not true of shortest paths in general.

Indeed, we suggest that, when near things are more related to one another than distant things, a

“useful” manifold path will tend to be both short in feature dissimilarity and geographical distance. Anal-

ogous to Church (2018), we will use ds to impose a geographical threshold distance d̄ while building C0.

This threshold ensures that “short hops” are geographically-short, while still connecting similar obser-

vations. This is an approach that explicitly leverages spatial dependence: nearby observations (within

d̄ of one another) are likely “more related” to one another than an equally-similar but geographically-

distant observation. Since distance becomes less useful to distinguish observations in high dimension

(an implication of the Curse of Dimensionality), we use geography to focus on more relevant connec-

tions that are both similar and geographically nearby. Functionally, this places a geographical restriction

on edges that can enter the k-similarity graph. An edge connecting i and j in the asptaial k-similarity

graph will be pruned if d(si, sj) > d̄, and the most similar other observation k will be chosen such

that d(si, sj) ≤ d̄. The resulting graph is the “d̄-reduced k-similarity graph,” where the k most similar

observations are constrained to be selected from nearby observations, those within d̄.

Stated in terms of Eq. 3, let g be a binary distance band function, where observations are consid-

ered “linked” if they are within a threshold distance d̄ of one another:

d(si, sj) =

1, ||si − sj|| < d̄

0, otherwise
(4)

where ||si − sj|| is the Euclidean distance between sites i and j. This distance threshold is often used
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Figure 2: Locally-Constrained Isomap becomes Isomap as d̄ gets large.

to model absolute accessibility in geographical problems, since any observation reachable by moving d̄
away from a starting point is considered equally accessible.9

In this specification, the path cost matrix C approaches that used in standard aspatial Isomap as d̄
becomes large. Because of this, the two techniques yield the same embedding in that case, as illus-

trated in Figure 2.10 Intuitively, this is because the “short hops” of Tenenbaum et al. (2000) are forced

to become proximate short hops; observations can only be considered “similar” if their geographical

locations are closer than d̄ to one another. If the aspatial k-similarity path from i to j is composed of

moves that are always less than d̄ in length, then that path remains in the “hybrid” geographical-feature

distance path in either the geographical or aspatial variant. Since d̄ constrains only a few paths at a

time, there is a smooth deformation of the embedding towards Isomap as d̄ increases.11

However, many paths in the aspatial k-similarity graph will not be geographically short. This is

shown in Figure 3, where the k-similarity graph for links under d̄ is shown. Each link in this graph is part

of the “hybrid” graph, built from k-similar geographically-short paths. The k-similarity path, geographical

shortest path, and hybrid shortest paths are shown in red, blue, and purple, respectively. If a link is

lighter-colored, the link is longer than d̄ (“too distant”) or is not in the k-similarity graph for links shorter

than d̄ = 3200 ft (“too dissimilar”). If a path has no lighter-colored links, the path is both feasible and

optimal over the k-similar, d̄-reduced graph. Only the hybrid path is both feasible and optimal.

A comparison of these different kinds of paths (using a pair of different observations) is provided

in Figure 4. There, the area in blue shows US Census tracts in Brooklyn that are within 3200 feet of

the originating tract in Crown Heights, Brooklyn (filled in white). The target tract in Prospect Heights

is colored in dark grey. Note that the target tract is not within 3200 feet of the source tract. On the

right, the most direct geographical path is shown. This is constructed by building the shortest path from

“hops” that are less than 3200 feet in length. This results in a path that is very nearly the straight-line

path between observations. On the left, the manifold path is shown. This manifold path moves through

9Euclidean distance can be replaced by travel time or another geographic distance and the problem remains the same.
10The two converge precisely at the point when d̄ is the longest geographical distance between an aspatially k-similar pair.
11The striking smoothness and stability of this transformation is best shown in the online supplementary material, where a

video of Figure 4 is shown as d̄ increases to the convergence point. This highlights the fact that this process is inherently a
continuous transformation of geographical space by data.
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Figure 3: The “hybrid” k-similarity graph.

four intermediary tracts (shown with red triangles) before arriving at the destination tract. Each of these

links is a “short hop” along a manifold in the terms of Tenenbaum et al. (2000). A link between tracts,

then, means that the two tracts are k-similar, and the path overall is the shortest path found over the

aspatial k-similarity graph that connects the Crown Heights origin and Prospect Heights destination

tracts. These “short hops” can be of any geographical length. Indeed, two of the links are well over

3200 feet. The Isomap algorithm considers this manifold path as the proper model of the dissimilarity.

A geographical variant, however, would prefer the middle path, which avoids making the long jumps

required to optimize similarity. In the center, the geographically-weighted manifold path is shown. Here,

the path is constructed according to the steps discussed in Section 3.1.1. The shortest path shown

for the hybrid path is from the k-similarity graph among tracts within 3200 feet of one another. The

difference in total length between the manifold path and the hybrid path reflect a kind of “optimality gap,”

or loss in similarity arising from more dissimilar but geographically-proximate hops. We return to this

(and other) ideas of loss and gain for using geographical information later in Section 3.3.

3.2.2 Using the GW-Heuristic: Geographically-Weighted Isomap

As discussed in Section 3, the idea of “localizing” a process using geographical weighting and kernel

functions has seen wide adoption in supervised learning, classification, and dimension reduction. Here,

we can use the same GW-heuristic to model a preference for shorter paths over longer ones without

enforcing a hard constraint. Further, we can pick still pick the ds so that the algorithm still tends to

12
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Isomap as a limiting case. For a geographical distance function ds with parameter θ and Euclidean

distance for dX, a sufficient condition for convergence to Isomap when θ approaches a special value

θ̄ is that the final distance matrix D remains a positive scalar multiple of the original feature distance

matrix:

DX ∗ Ds ≈ cDX c > 0 (5)

One such function is the exponential distance-weighting function:

d(si, sj|α) = ||si − sj||α α > 0 (6)

Using this function to model geographical proximity, C0 becomes a hybrid cost matrix, containing both

feature-space information on dissimilarity and geographical information about proximity:

Dij = d(xi, xj)||si − sj||α (7)

As α → 0, the algorithm again becomes Isomap: all geographical distances collapse to 1, the k-

similarity graph approaches that used in classical Isomap, and geography is ignored.12

The behavior of the embedding with respect to the scaling parameters α is shown in Figure 5. As

α increases, geographical proximity comes to dominate in importance, forcing geographically remote

observations to spread further out. The effect attenuates when α → ∞, reflecting the fact that the

variation in only the largest distance dominates at that scaling factor. For 0 < α < 1, the geographical

“cost” of making distant hops decreases until α = 0, where k-similar lengths of any geographical

distance are considered acceptable and the Isomap embedding is recovered.

12While there may be some special ᾱ > 0 exists such that the geographically-weighted k-similarity graph is the same as
Isomap’s k-similarity graph, those value(s) of ᾱ depend on the geographical and feature-space structure in the data in each
case.
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3.3 Assessing Geographically-Learned Manifolds

The “quality” of a low-dimensional embedding is difficult to characterize, as noted routinely by scholars

in machine learning. While subjective visualization methods have been used extensively (Ultsch and

Siemon 1990; Konig 2000; Spielman and Thill 2008; Henriques, Bação, et al. 2012; Mokbel et al. 2013;

Gracia et al. 2014; Moosavi 2017), a large amount of recent work has aimed to define new measures

of manifold quality itself. Many methods focus on the extent to which observations that are near one

another in high dimension are preserved in low dimension (Bauer and Pawelzik 1992; Villmann et al.

1994; L. Chen and Buja 2009; Goldberg and Ritov 2009; Lee and Verleysen 2009; Lee and Verleysen

2010; Meng et al. 2011) although recent work has explored other information, such as the preservation

of “landmark” properties (Zhang et al. 2012), topological structures like holes (Paul and Chalup 2017),

or relative orientation (D. Chen et al. 2019). The development of both visual and statistical analytics for

the examination of manifold quality and structure indicates that having multiple different ways to think

about and measure manifold quality is useful.

Since geographical work on manifold learning has typically followed Openshaw (1994)’s adoption of

Kohonen (1990), the “U-matrix” is often used (Ultsch and Siemon 1990), but this visualization strategy is

not as useful for other manifold embedding methods. Thus, we mainly visualize the manifold embedding

using paired map-plot views that link a variable’s spatial distribution to its distribution in the embedding.

We also suggest using popular notions of “neighborhoods” to landmark locations in the embedding

space.13 However, to assess the Isomap variants’ differences, new diagnostics are needed to formalize

what is “gained” using geographical information. Toward that end, we propose three new relative quality

measures.
13Using neighborhoods provided by zillow.com, an online housing market reconnaissance platform.
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3.3.1 Relative Stress

Any method that involves MDS will have a measure of stress (Equation 1). This quantity is minimized

by the MDS method. We use a relative error formula to develop relative stress, or the change in stress

from aspatial Isomap caused by including geographic information:

sr =
sν − s

sν
(8)

where sν is the stress of the standard Isomap procedure. When sr is positive, aspatial Isomap has

higher solution stress than when geography is incorporated. When sr is negative, Isomap has lower

stress than a geographical variant. As suggested by the convergence of geographical Isomap to the

aspatial Isomap in Figure 2, relative stress approaches zero when solution stress becomes similar.

3.3.2 Relative Efficiency

We suggest a measure of relative efficiency, which measures the median percentage change in path

lengths. Tenenbaum et al. (2000) suggests that short total paths and long individual segments may in-

dicate more “short-cutting,” where a path ignores non-linear structure in high dimension. For geograph-

ical Isomap, paths may either increase or decrease in length. Path lengths can get longer because

the path becomes more circuitous along the manifold, as it must now include both geographically-near

and feature-similar observations. Decreases in path length occur because of the “greedy” nature of

Isomap’s k-similarity graph solution to the manifold shortest path problem: the k-similarity graph may

not necessarily contain the optimal set of “short hops” to connect two observations, and a shorter to-

tal path could be built from slightly longer hops that still travel along the manifold. However, for the

geographically-weighted C, we cannot compare path lengths directly: they involve distances in entirely

different units due to the kernel mixing. Therefore, to ensure comparability, we instead recover the “raw”

feature dissimilarity of paths used by the geographical variant.

To do this, we rely on the so-called “predecessor matrix” used in all-pairs shortest path algorithms

that construct C. This predecessor matrix can be used to rebuild edge sequences for paths whose

costs are contained in C (Ahuja 2017). Then, the predecessors are used to compute total path lengths

using costs from DX, instead of C0. This matrix, CX is identical to C for Isomap, but may be distinct

from C for geographically-mixed kernels. Thus, using CX, we can define median relative efficiency as

the median percentage change in feature dissimilarity when geographical information is introduced:

e = medianij

(
[Cν]ij − [CX]ij

[Cν]ij

)
i, j = 1, 2, . . . , N (9)

where Cν is the cost matrix for standard Isomap.14 Efficiency approaches zero when two embeddings

use the same manifold paths, but can be either positive or negative.

14The median is used to account for outlying distances. These can skew the mean change significantly, such as when the
GW-Isomap scaling parameter increases beyond 1.
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Figure 6: Stress & Efficiency as a function of the spatial parameters in two spatial Isomap variants.

3.3.3 Gain

Since both efficiency and gain are measured in percentages relative to Isomap, they are directly com-

parable. In most cases, efficiency is negative; the introduction of geographical information will tend to

cause the typical path to increase in length. When relative stress is positive, the introduction of geo-

graphical information reduces solution stress, indicating improved solution fit. When relative stress is

negative, geographical information increases the stress of the embedding and worsens solution fit. The

gain from introducing geography to the solution can then be thought of as any reduction in stress over

the loss of efficiency:

g = sr + e (10)

So, in the common case, g measures an “extra” improvement in stress over relative loss of efficiency.

When Isomap has lower stress and shorter paths, gain is negative. But, if geographical information

lowers solution stress, gain is positive.

4 Interpreting Geographical Dimension Reductions

In the sections that follow, we interpret the results of the manifold learning first by examining stress and

efficiency, then by exploring visually how an embedding stretches or compresses each variable in a

dataset, and closes by using “neighborhoods” as landmarks to examine demographic and geographic

cohesion in the resulting embedding. Eight variates encompassing racial, ethnic, and economic infor-

mation in the 2017 5-Year American Community Survey were used. These were compressed into two

dimensions using the two geographical Isomap variants presented in Section 3.1.15

4.1 Stress, Efficiency, and Gain

First, the smoothness of change and limiting patterns presented in Figure 2 apply regardless of whether

the embedding is built using geographically-weighted or locally-constrained variants. This means that

small changes in the geographical parameter tend to make small changes in the embedding. As such,

15In addition to Wolf, Germuska, et al. (2016) and Pedregosa et al. (2011), all software used in this analysis is made
available in free software in the Python library for spatial analysis (Rey and Anselin 2007).
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Figure 7: Gain, the net reduction in stress relative to the increase in path lengths, as a function of the
spatial parameters in two spatial Isomap variants.

the resulting low-dimensional embedding transitions smoothly from an emphasis on geographical in-

formation to an emphasis on feature information. This is shown explicitly in the video provided in the

supplementary material, which reveals both the limiting pattern behavior and the smoothness of change

across geographical dissimilarity parameter values.

We demonstrate these same patterns in Figure 6, albeit in a less dynamic fashion. This figure shows

the change in relative stress and efficiency measures discussed in Section 3.3 as a function of the

geographical dissimilarity parameter for the two geographical Isomap variants. Notably, relative stress

and efficiency values change smoothly with respect to the distance threshold or scaling parameters.

For either geographical variant, this suggests what the supplementary video demonstrates directly:

the kernel averaging discussed above is well-behaved since statistics about the embedding change

smoothly as the geographical parameter changes. Further, the limiting properties are confirmed, as

well; relative stress and efficiency both approach zero as the geographical parameter approaches its

limiting value.

Since both relative stress and efficiency go to zero as each geographical Isomap variant converges

to the aspatial Isomap solution, gain goes to zero, too. But, since relative stress and efficiency may

go to zero at different rates, the maxima for gain can be used as a point indicating the best (linear)

trade-off between reduced stress and longer paths. The geographical parameter at this maxima also

provides an estimate of the “intrinsic scale” of the process, a geographical analogue to the “intrinsic

dimensionality” of a process (Trunk 1968; Verveer and Duin 1995) studied elsewhere in supervised

geographical learning (Wolf, Oshan, et al. 2018; Murakami, Lu, et al. 2019).

In both cases, efficiency loss approaches zero faster than the relative improvement in stress. This

means that, for some range of values, geographical variants will have lower stress and an acceptable

increase in the average manifold path length. We see this explicitly in Figure 7, which shows the net

gain for both variants as a function of the distance parameter. Again, this function changes smoothly

and can be optimized to reflect a balance between stress reduction and path distance increase.

The geographical kernel parameter at this maximum gain is an estimate for the “intrinsic scale”

of the data in both problems: for the locally-constrained Isomap method, a local constraint of 3838

feet has the highest gain, meaning that it has the largest gap between the percentage improvement in

stress and percentage increase in path lengths, relative to aspatial Isomap. Practically, this means that
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you can find paths in the data with links no longer than 3838 feet, but that still generally avoid “short-

cuts” through the manifold. In the geographically-weighted variant, the maximum gain is reached when

α = .42, suggesting that something close to the square-root of the map distances is the optimal geo-

graphical kernel. Likewise, this means that using the weighted distances d(xi, xj)||si − sj||.42 provides

a geographically-weighted k-similarity graph with paths that still are slightly longer in terms of manifold

distance, but provide a low-dimensional embedding with considerably lower stress.

4.2 Geographical and Similarity Structures in Low Dimension

The relationship between the low-dimensional embedding and the geographical distribution of each

variable is shown in Figures 8 & 9 for the two spatial methods at their optimal gain values. Here,

the columns represent the version of Isomap used to conduct dimensionality reduction. Each row

corresponds to one of the eight variables taken from the 2017 American Community Survey used in

dimensionality reduction. The colors are linked, so that brighter tracts/points have higher values of that

variate and darker colors have lower values. Overall, the embedding structures are quite different, but

exhibit similar macro-level properties.

The constrained embeddings strongly comport with racial/ethnic axes. Shown in Figure 9, these

variables tend to exist strongly into specific regions of an embedding. Each racial/ethnic group is

strongly separated in the embeddings, but only the aspatial Isomap merges together the geographically-

disparate mainly-Hispanic or mainly-white tracts into a single area of the embedding. The geograph-

ical methods, while compressing demographically-homogenous observations together, do not force

geographically-distant but demographically-homogenous areas together.

Another way of examining what areas shrink and grow together is by visualizing the geographi-

cal distribution of the component outputs after dimension reduction, shown in Figure 10. There, we

see that the patterns of the two components from any variant of Isomap are strongly geographically

patterned, expressing the geographical structure inherent in the data and relatively low “intrinsic” di-

mensionality. However, we see that the gradients in each map are different, suggesting that the dif-

ferent hybridizations of geographical proximity and feature similarity cause different structures to be

persist from high-dimension to the lower-dimensional embedding. For instance, component 1 in the

locally-constrained embedding has higher scores in the north west than the geographically-weighted

embedding; the weighted embedding also exhibits a nonlinearity in geographical structure, with a higher

(relative) component 1 score in the hispanic areas in north Brooklyn, appearing more similar to the as-

patial solution than the locally-constrained solution. Further, the locally-constrained version Altogether,

the geographically-weighted version reduces much more stress, but regardless: geographical Isomaps

are quite distinct from each other and from Isomap in both embedding- and geographical-space.

4.3 Interpreting Geographical Landmarks

Whereas the selection and interpretation of “landmark” structures in manifold learning is a known prob-

lem (Silva et al. 2006; Zhang et al. 2012), geographical “landmarks” are actually both readily available
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Figure 8: Embeddings at the maximum gain for geographical Isomap variants and standard Isomap,
with the first four variates.
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Figure 9: Embeddings at the maximum gain for geographical Isomap variants and standard Isomap,
with the second four variates.
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Figure 10: Maps of the component outputs from dimension reduction.
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and simple to define for manifold learning. A “landmark” in this context is a known structure intended to

be preserved during dimension reduction. For geographical problems, there are a variety of meaning-

ful geographies used in planning, property markets, and popular language that can be used to orient

ourselves in the manifold. One such way is to use neighborhoods as landmarks, linking the dimension

reduction to a known region of the map. Eight neighborhoods in Brooklyn are shown in Figure 11 with

varying levels of geographical remoteness and demographic distinctiveness and coherence. In that

figure, we have included areas that are mainly-hispanic (Bushwick) and Asian (Sunset Park), African

American (East Flatbush), and White (Greenpoint) to provide a sense of orientation in the major axes

of the dimension reduction. This visualization strategy also suggests how cohesive individual neighbor-

hoods are in terms of the learned manifold, and provides a vocabulary we can use to link regions on

the map and the embedding.

For instance, Sunset Park contains both significant Asian and white populations, given its geographically-

compact Chinatown. In the aspatial Isomap solution, this forces the neighborhood to distribute across

the bottom-right edge of the embedding. Likewise, the neighborhood exhibits its unique demographic

profile in the geographically-weighted Isomap and locally-constrained Isomap variants, too. This sug-

gests that the neighborhood’s demographic structure and its geographical status on the western edge

of Brooklyn drive its location in any of the dimension reductions. However, East Flatbush is centrally-

located in Brooklyn and is predominantly African American. This demographic cohesion results in it

remaining coherent in the resulting embedding; however, its geographical centrality shifts it further from

the edge. A remote, largely white neighborhood like Greenpoint experiences improved coherence in

the geographical embeddings, but larger diverse and relatively remote neighborhoods like Williamsburg,

Bushwick, or Bedford-Stuyvesant are again made much more coherent in the spatial dimension reduc-

tions than in the aspatial variant. Overall, this suggests that geographical centrality/distance and feature

coherence are clearly treated differently by the dimension reduction methods; neighborhoods that are

demographically-coherent appear to be preserved after dimension reduction, but some communities

are made more coherent in the dimension reduction when considering their geographical structure and

relationship to other nearby areas.

5 Conclusion

Dimension reduction is a long-standing interest in geography, yet significant advances in computer sci-

ence and machine learning have not been strongly-integrated with contemporary research. New direc-

tions in manifold learning, or non-linear dimension reduction, stand to significantly improve geographical

analysis. Geographical problems are often characterized by high-dimensional non-linear relationships

and geographically non-stationary behavior. Further, there is often no “outcome” to be modeled directly

in exploratory spatial data analyses, only data to be simplified or dimensions to be identified as “useful”

for further explanatory or predictive models. Thus, manifold learning is one highly-relevant frontier of

dimension reduction research, and provides many entry points for geographical researchers.

As suggested by Kohonen (1990), geographical machine learning methods must deeply integrate
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geographic structure into learning in order to benefit. Kernel averaging, the combination of multiple ker-

nels, can be adapted to geographical problems in prediction, classification, and dimension reduction. As

we suggest, kernel averaging provides a powerful, general purpose technique to incorporate spatial in-

formation into kernel-based machine learning problems. In making this argument, we develop a spatial

variant of Tenenbaum et al. (2000) and demonstrate how geographical machine learning may provide

different insights and different results when applied to unsupervised learning of high-dimensional ge-

ographic data. Through kernel averaging, we can encourage machine learning methods explicitly to

learn geographically.

The preservation of geographical structure in dimension reduction is a critical property for geo-

graphical community detection, neighborhood analysis, and spatial modeling. For example, an aspatial

Isomap procedure will treat observations from distinct (but attribute-similar) communities as equiva-

lent. However, as we show here, geographical Isomap methods ensure that geographical structure

enters into the embedding solution. It does so without dominating the solution, however, forcing the

solution to be purely geographical as is done in explicit data-driven regionalization methods. Learning

becomes “geographically-encouraged,” but not explicitly constrained or forced to respect pre-conceived

geographical structure. Developments in “spatially-encouraged machine learning” will have profound

consequences for geodemographics, a domain heavily involved in dimension reduction in cases where

a compromise between geographical regularity, temporal stability, and feature homogeneity can be dif-

ficult to strike (Voas and Williamson 2001; Singleton and Spielman 2014; Singleton, Pavlis, et al. 2016),

as well as other urban data science topics. Clustering the results of a hybrid geographical-manifold

dimension reduction, where nearby observations are both similar and feature-near, may yet blend the

dichotomy between spatial constraint and feature optimality (Knaap et al. 2019).

Beyond the implications of these methods for geodemographics, the usefulness of kernel averaging

is heightened by the ability to define explicit tradeoffs between “local” and “global” ends of a geograph-

ical machine learning algorithm’s parameter space. This allows for the identification of an “optimal

scale” in an unsupervised learning context; this is the scale at which the geographical solution has

the largest improvement in the objective for dimension reduction, accepting that it may entail a loss of

efficiency other aspects of the algorithm. This gain in fit relative to loss in efficiency is well-behaved,

consistent from problem to problem, and provides a way to estimate geographical scale in complex

high-dimensional data without having an explicit outcome variate or process model. Thus, this method

may be of significant use in contexts where scale itself is under examination. Since many modern di-

mension reduction methods can be re-stated as kernel Principal Components Analyses (Ghodsi 2006),

kernel mixing can immediately be applied to other methods in the same way suggested here.

Thus, mixing geographical and feature kernels provides a useful and extremely flexible method for

incorporating geography into unsupervised machine learning problems. This work is part of a larger

agenda to provide geographic machine learning methods that leverage geography explicitly, rather than

simply using machine learning in service of geographical analysis. Geographic kernel mixing technique

stands to be of extreme benefit simply from the generality of kernel learning problems in machine

learning. Thus, through a new geographical Isomap, we show that kernel mixing is an effective way to
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induce geographical learning in a classical machine learning technique and, in the process, opening a

variety of new questions in the development of geographical machine learning methods. Future work on

explicitly-geographical machine learning in geographic data science (Singleton and Arribas-Bel 2019)

should continue to expand on kernel mixing as a way of “geographying” machine learning methods.
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