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PySAL is a library for geocomputation and spatial
data science. Written in Python, the library has a
long history of supporting novel scholarship and
broadening methodological impacts far afield of
academic work. Recently, many new techniques,
methods of analyses, and development modes have
been implemented, making the library much larger
and more encompassing than that previously discussed
in the literature [68]. As such, we provide an
introduction to the library as it stands now, as well as
the scientific and conceptual underpinnings of its core
set of components. Finally, we provide a prospective
look at the library’s future evolution.
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1. Introduction
In recent years, it has become increasingly important for scientists to adopt open science
practices [59,60], especially for junior or early-career researchers [1]. An open approach enhances
reproducibility, transparency, and speed of scientific workflows and discovery. One critical part
of open science practices is the development, improvement, maintenance, and use of open
science tooling [23]. Alongside the broader trends in quantitative research towards computation-
driven inquiry [19], geography has provided a fertile ground for open science [69,77]. Large-
scale collaborations on technical and scientific infrastructure have long been a requirement
in geography, owing to distinctive spatial data representations, statistical concerns, and
computational requirements. But, in the past, many of these large-scale, open collaborations have
been outpaced in functionality and computational performance by closed source, proprietary
platforms. This led to widespread awareness of the challenges of “disabling technologies” in
the field [29], where the implementation of a specific suite of analytical capabilities limited the
conceptual and practical reach of spatial science. During the past decade, however, the situation
has begun to change, as progress in methodology of spatial analysis has been aided by the
availability of open source (and thus verifiable) software, in contrast to the closed source black
box implementations of proprietary software, where the underlying assumptions were often not
made explicit.

As a result, the influence of dependence on proprietary software has been waning, as there
is now a strong case to be made for open science in geography [30,64]. Treating scientific code
as text, enmeshed and integral to the scientific work, has pedagogic, scientific, and societal
benefits. As part of this process, packages such as spdep in R [10] or PySAL in Python [68]
serve as open libraries in two senses. First, in terms of computation, they are open libraries
that support scientists doing spatial science through the analyses they make possible. Second, in
terms of literature, they are open libraries that support students learning spatial science through
the algorithms they make explicit. Thus, it is important to ensure long-term contributions,
development, and maintenance to open scientific libraries.

Since its initial public release in 2010 [67], PySAL has demonstrated the benefits of an
open source geographic science library and seen widespread adoption1 across a diverse set of
applications. As a software library, PySAL is relied upon by a number of upstream packages to
develop specialized tools for spatial analysis, prominent examples include geopandas, geoplot,
momepy, and geosnap. PySAL is also used by researchers in the analysis of a wide array
of topics across many disciplines including political science [35], criminology [37], economics
[21], planning [52], public health [38], engineering [20], environmental science [32], chemistry
[78], physics [36], religion [22], biology [51], neuroscience [12], epidemiology [34], technology
forecasting [44], climate change [56], organizational dynamics [83], information visualization [15],
ecology [79], and sociology [48], among others.

PySAL has significantly evolved since its original inception, both technologically and as a
collaborative research endeavour. This paper frames recent changes against the backdrop of the
project’s history, and presents the ecosystem model that was recently adopted as a solution to
some of the challenges posed by its own success. The remainder of the paper is organised as
follows: Section 2 reviews the process of growth and change experienced by the project since its
early years to the recent move to a federated model; Section 3 introduces the new structure of
the package and, in doing so, reviews the current set of functionality available in PySAL; Section
4 considers non-technical aspects of the project, including governance practices, the approach to
community-building, and pedagogy; and Section 5 concludes with some reflections on the future
challenges and next steps.

1PySAL has been downloaded over 1 million times from pypi: https://pepy.tech/project/pysal.
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2. PySAL 2.0: Original Design, Evolution, and Current Model
(i) Original design principles

To understand the new model recently adopted, we first need to frame it under the evolution
the library has experienced since its inception, now over ten years ago. At the time, the Python
scientific ecosystem was largely devoid of any packages covering geospatial analysis. PySAL
was conceived as an initial attempt to fill this void. Our target audience was data scientists who
wanted to engage with spatial analysis using Python; as well as developers who could leverage
the library to build new applications across the growing number of delivery platforms including
desktop, plugins to standard geographic information systems, and web-based applications.
To support those users, and fuel the dissemination of the library, we wanted to ensure that
installation of PySAL was streamlined.2 We also stressed the importance of interoperability with
the wider geospatial stack outside of Python, such as the proliferation of spatial analysis packages
in R, MATLAB, and STATA, brought with it language-specific implementations of spatial data
formats and handlers that were beginning to limit collaboration between user and developer
communities. Python had already been widely recognized as an excellent “scientific glue” [82]
that could be used to leverage disparate scientific code. In designing PySAL, we wanted to
leverage this feature of Python.

The original model to develop PySAL was community-driven and centralised. The code was
structured as a single package with several submodules closely interrelated. Since there was
little existing Python code within the domain, the first versions were focused on covering the
minimum functionality required to start a spatial analysis workflow. This included functionality
such as file readers and writers, and foundational data structures on which several techniques
relied, e.g. spatial weights matrices. Once these building blocks were created, with development
mainly driven through volunteered time, subsequent functionality focused on areas related to
ongoing grants or research interest of the then developers. At the time, the development team
was formed by five to ten people who already had a history of collaboration through other
research projects, all based within the same academic department. These circumstances allowed
for direct communication, rapid iteration of ideas, and agile progress. However, it also meant that
efforts to establishing more formal channels of communication and scaffolding to integrate new
contributors external to the PySAL project remained aspirational.

(ii) Growth in a time of (technical) debt

While this first model of growth and community-driven development was innovative for the
field of spatial sciences and spatial econometrics it also resulted in “technical debt” [43]. Though
it succeeded in getting the project off the ground, choices about the structure of the software
affected the software’s subsequent growth, maintenance, and future stability. First, designing
the package as a monolithic distribution of spatial analysis functions meant that some parts of
the library were very tightly coupled [57], causing changes introduced into these components
of the library to immediately and substantially affect other parts. In some cases, this resulted
in “cascades” of faults: changes in the “stack”, the numerical and computational libraries upon
which PySAL relied (e.g. numpy, 80; scipy, 84) could introduce software faults in one part of
PySAL and the entire package would thus be compromised. Additionally, attempts to resolve
such faults would sometimes introduce new issues in other parts of the library. Triage of these
problems and their fixes was difficult; especially alongside accepting new contributions and
continuing the development of the package as new scientific advances were made. This situation
made the library confusing to use for those not directly involved in the development process and
complicated the process of accepting outside contributions.

Second, the history of the package significantly guided how the package was distributed and
discussed. Since many in the original development group understood most of the functionality
2At the time, there were no dedicated package managers such as Anaconda, Inc.’s conda or container technologies such as
Docker, and installing certain dependencies was notably more involved than currently.
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across the library, all functionality was distributed together and exposed at the same Application
Program Interface (API) endpoint. For example, users interested in conducting spatial regression
analyses would also be exposed to a set of statistics and tools for the analysis of Markov Chains
in the program’s interface. This API design also meant that explanations of what PySAL could do
were difficult to focus, further complicating user experience. Beyond PySAL being perceived as a
large toolbox filled with many tools used for very different purposes, for a new user it remained
unclear as to how the pieces all fit together.

Third, the maintenance required by tight coupling hindered the efforts of new contributors.
Because parts of the package were tightly coupled, new contributions often required large
amounts of editorial work by a team of maintainers, before novel functionality or enhancements
could be integrated. This caused a situation akin to the Matthew effect [49]: a new contributor
may make a significant and novel addition, but this addition would be credited to experienced
contributors. Significant contributions from new community members would require integration
work elsewhere in the package. This integration work would normally be done by senior
maintainers. The whole contribution would get “credited” to the senior maintainer that made
it possible to include the new functionality. This is in spite of the fact that the new contributor led
the effort and that the maintainers were adamant about sharing credit. While this is primarily a
social problem, the tight coupling of the software exacerbated the integration effort required to
include new contributions.

Finally, the tight coupling between library components seriously limited the library’s ability to
grow, refactor, and integrate with new dependencies as the Python ecosystem grew.3 As a design
principle, the Python language adopts a loose collection of statements set forth in Peters [58].
The thirteenth statement, “There should be one—and preferably only one—obvious way to do [a
task],” became particularly challenging to obey due to the tight internal coupling in PySAL. Some
parts of PySAL had been written before Python was mainstream in science. Critically, Python’s
widespread adoption in spatial sciences meant that new packages often replicated and improved
the infrastructure that PySAL built in service of its main point: cutting-edge spatial analytics.
But, it was difficult to justify the inclusion of these new community projects; since the packages of
interest only provided computational infrastructure, the work needed to re-tool the infrastructure
was less important than that implementing scientifically novel algorithms. This meant that new
packages were not adopted even when they significantly improved upon existing functionality.
As the number of new packages replicating or improving basic functionality increased, PySAL’s
internally-consistent structure also lead users to think that the package was not integrated in the
wider discipline. As the tide of geospatial packages in Python continued to rise, PySAL needed to
cut this tight-coupling tether, relying on the growing geospatial infrastructure in Python to hone
the library’s core competencies in spatial analytics.

(iii) A “federated” solution

The solution proposed and implemented to the growing challenge of maintaining and expanding
PySAL was to move from a tightly integrated to a federated model. Rather than contributing all
code to a monolithic package that holds all functionality, the project moved to a model where
functionality was split into several, smaller packages, each having a clearly delimited area of
focus. Each of these packages are now independent Python packages in their own right. As such,
they may have different maintainers, release cycles, and sets of dependencies. In this context,
the library PySAL becomes an “aggregator”, or a meta-package, that brings together all of these
packages under a common brand and interface with a single install: every six months, PySAL
collects the latest release of each federated package, wraps them under a common API, and
releases it in a bundle.

This model brings together benefits from a monolithic and a fully distributed approach.
Because the functionality is split across independent, self-contained packages, development is

3Dependencies are other Python packages that provide algorithms or computational objects that form the foundations upon
which PySAL’s analytical functionality was built.
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faster and more agile. Developers can rely on official versions of other packages to develop
their own, and can focus on expanding functionality rather than ensuring their changes do not
affect other ends of the library. Equally, testing any single package and catching faults is faster
since each package’s tests are now isolated from other packages. Furthermore, since packages
are independent, releases of each sub-package can take place as soon as the developers agree to,
without having to coordinate with a larger team. Users interested in the functionality contained
in one package can install only that package, bringing a smaller footprint and a more limited
set of dependencies. Finally, it is easier to explain the purpose and functionality of each smaller
package, as they focus on and contain only related functionality.

These independent packages with more focused functionality also provide a venue to spread
the credit and enhance contributions from outside. As discussed above, the monolithic approach
lends itself more to focus attention on a smaller set of developers and maintainers, even though
a larger group might be contributing functionality. A federated approach opens the option to
include more developers in lead roles as package maintainers, and provides more opportunities
to disseminate the functionality in independent papers (e.g. 47) or other venues, such as citable
software releases through zenodo [50]. This ensures the community is healthy, broad, well-
integrated and provides incentives to grow in diversity and functionality [87]. At the same
time, the meta-package offers several of the benefits of the monolithic approach. Users with
less specific needs, can rely on the six-month release to provide a stable, one-install version that
requires all the dependencies and installs the entire set of functionality provided by the federation.
This “aggregator” also acts as a platform with higher visibility that makes it easier to discover
functionality.

3. Current Analytical Capabilities
The new federated approach means PySAL is a meta-package that re-distributes several
independent smaller packages. The purpose of grouping several packages loosely connected
thematically is to bundle, organise, and assure quality, so that the result is a consistent platform for
spatial analytics. In this sense, the project has de-coupled the structure of software development
from the issues of providing a platform that is easy to access, learn, and deploy. This way, the
distribution and development issues are now resolved within each federated package, while the
concerns about consistency and pedagogical clarity are addressed in the meta-package. Since the
number of packages that PySAL encompasses is relatively large4, and is expected to grow over
time, the team decided to organise functionality in more general thematic categories, such as
visualization or data exploration, and re-wrote the API to reflect such change. The result is PySAL
2.0, released first in 2019.

The PySAL 2.X series organizes functionality around four main areas or domains: lib -
core data structures and foundational algorithms-, explore - spatial data exploration -, model -
explicitly-spatial modelling -, and viz - tools for visualization of spatial statistical analysis. Each
of these domains is broadly aligned with different components of a spatial analysis workflow, and
accordingly houses packages providing related functionality. To reflect this feature, each federated
package is imported from within its own domain. The remainder of this section briefly describes
the packages present in each domain for the original 2.0 release.

(a) Foundational Algorithms: libpysal
Underpinning the three domains, libpysal provides foundational algorithms and data structures
that support the rest of the library. This currently includes the following modules: input/output
(io), which provides readers and writers for common geospatial file formats5; weights (weights),
which provides the main class to store spatial weights matrices, as well as several utilities to
4The first meta-package version of PySAL (2.0) consisted of 14 pakcages.
5Much of these are provided in a legacy mode to avoid breaking backwards compatibility. However, the consensus among
the development team is to offload much of this area to related packages such as geopandas or rasterio.
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manipulate and operate on them; computational geometry (cg), with several algorithms, such as
Voronoi tessellations and alpha shapes [18] that efficiently transform geometric shapes; and an
additional module with example data sets (examples). This domain is also a single stand-alone
package due to its core importance to other domains.

(b) Exploratory Spatial Data Analysis: explore
The explore layer of PySAL includes modules to conduct exploratory analysis of spatial and
spatio-temporal data. At a high level, packages in explore are focused on enabling the user to
better understand patterns in the data and suggest new interesting questions rather than answer
existing ones. They include methods to characterize the structure of spatial distributions (either on
networks, in continuous space, or on polygonal lattices). In addition, this domain offers methods
to examine the dynamics of these distributions, such as how their composition or spatial extent
changes over time.

(i) esda

Exploratory spatial data analysis (ESDA) involves the interrogation of patterns in spatial data.
Common topics in ESDA include the analysis of spatial dependence, where realizations from a
random spatial process depend on other nearby realizations and spatial heterogeneity where a
process may exhibit different behavior in different areas. In exploratory spatial data analysis,
spatial autocorrelation, statistical dependence of a given variable with other nearby measurements
of that same variable, is often critical to identify and understand. The esda package implements
methods for the analysis of both global (map-wide) and local (focal) spatial autocorrelation [3], for
both continuous and binary data. In addition, the package offers new statistics about boundary
strength [86] and measures of aggregation error in statistical analyses [17].

(ii) giddy

Geospatial Distribution Dynamics (giddy) is an extension of ESDA to spatio-temporal data. The
package hosts state-of-the-art methods that explicitly consider the role of space in the dynamics
of distributions over time [39]. A full set of spatially-extended discrete Markov chain models,
including Spatial Markov, LISA Markov, Full Rank Markov, and Geographic Rank Markov
models [62,65] are available for users who are interested in the underlying transitional dynamics
of a process as well as how the spatial structure shapes such dynamics. Global and Local
Indicators of Mobility Association, GIMA and LIMA [66], are also provided in giddy. These
indicators assess the degree to which changes in the positions in an (income) distribution over
two time periods displays a global or local spatial pattern.

(iii) inequality

Indices for measuring inequality over space and time are included in the inequality package.
These comprise classic measures such as the Theil T information index and the Gini index in
mean deviation form; but also spatially-explicit measures that incorporate the location and spatial
configuration of observations in the calculation of inequality measures. For example, the Theil
inequality index can be decomposed into between and within inequality contributions, or the so-
called inter- and intra-regional inequality [63]. Complementing this partition-based approach, the
package also provides a Spatial Gini decomposition [72] that can be used to test if inequality is
distinct between observations that are spatial neighbors and those that are not. Complementing
the implementation of measures of inequality, several statistics also include inference methods
that use a variety of permutation-based and analytical approaches.
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(iv) pointpats

The statistical analysis of point data is supported by the pointpats package [61]. This package
provides methods to characterise the spatial structure of an observed point pattern: a collection
of locations where some phenomena of interest have been recorded. Measures of centrography
provide overall geometric summaries of the point pattern, including central tendency, dispersion,
intensity, and extent. In addition, pointpats supports a flexible window, or geometric frame, that
is used in the calculation of these descriptive measures and in visualizations. This window is also
used to implement formal tests for clustering or co-location, including quadrat-based methods
and distance-based methods [81].

(v) segregation

The segregation package calculates over forty different segregation indices and provides a
suite of additional features for measurement, visualization, and hypothesis testing that together
represent the state-of-the-art in quantitative segregation analysis [14]. These methods are exposed
to the user through a streamlined interface that allows the calculation of common and advanced
measures of segregation, including aspatial, spatial, two-group, multi-group, and localized
indices. In addition, the spatial structure of a dataset can be represented using spatial weights
from the lib domain, or street network distances that can depict a more detailed picture of urban
accessibility. Users of segregation can also perform simulation-based hypothesis testing for single
values (e.g. when testing for the presence or absence of segregation) or value pairs (e.g. when
testing whether a given city is more segregated than another), as well as decompose comparisons
into spatial and demographic structures.

(vi) spaghetti

Many spatial processes are constrained to networks, and hence, studying them in a euclidean-
based framework may lead to results that are less representative of reality [7,16]. Therefore,
Spatial Graphs: Networks, Topology, & Inference (spaghetti) was developed to provide data
structures and analytical methods to study networks and statistical processes on networks [28].
For instance, the Network K Function allows for the statistical testing of clusters on networks
[53, Ch. 6]. In order to make these kinds of statistics efficient, spaghetti provides a robust
all-to-all Dijkstra shortest path algorithm with multiprocessing functionality. Other current
functionality includes high-performance geometric and spatial computations using geopandas
that are necessary for high-resolution interpolation along networks, and the ability to connect
near-network observations onto the network [27].

(c) Explicitly-Spatial Statistical Modelling: model
In contrast to explore, the model layer focuses on confirmatory analysis. In particular, its packages
focus on the estimation of spatial relationships in data with a variety of linear, generalized-linear,
generalized-additive, nonlinear, multi-level, and local regression models.

(i) mgwr

Geographically-weighted regression (GWR) is a central tool in geographical analysis [24]. At
its core, geographically-weighted regression models are a local regression technique [13] that
borrows data from nearby locations to estimate place-specific coefficients. The method recognizes
that parameters may vary across the spatial domain when the same stimulus elicits a different
response depending upon geographical context. Recent innovations in the GWR methodology
remove the limitation that only one scale is considered; typically a single “bandwidth” controls
how far sites are allowed to borrow data for all of relationships in the model. Multiscale GWR
is a new approach based on generalized additive models [88] that allows for bandwidths that
vary uniquely for each predictor [26]. This means that data borrowing might be more local for
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some covariates than others, suggesting more nuanced patterns in the relationships between
a set of covariates and a response. Altogether, the mgwr package provides scalable algorithms
for estimation, inference, and prediction using single- and multi-scale geographically-weighted
regression models in a variety of generalized linear model frameworks, as well model diagnostics
tools [54].

(ii) spglm

In order to solve geographical modelling problems efficiently, it is useful to employ sparse matrix
operations where possible [9]. Existing generalized linear modelling frameworks in Python,
such as statsmodels [76], did not fully incorporate sparse methods in its generalized linear
modelling frameworks. To address this gap, spglm implements a set of generalized linear
regression techniques, including Gaussian, Poisson, and Logistic regression, that allow for sparse
matrix operations in their computation and estimation to lower memory overhead and decreased
computation time.

(iii) spint

Spatial interaction models are a class of geographical models for studying the interaction between
places [8,25,75]. spint seeks to provide a collection of tools to study spatial interaction processes
and analyze spatial interaction data [55]. A primary functionality of spint is to facilitate the
calibration and interpretation of a family of gravity-type spatial interaction models, including
those with production constraints (where total outgoing flows predicted by the model must
be unbiased), attraction constraints (where total incoming flows predicted by the model must
be unbiased), or a combination of the two constraints [85]. Given the unique structure of
calibrating models with constraints, spint provides scalable algorithms by leveraging sparse
matrix operations in spglm.

(iv) spreg

The package spreg supports the estimation of classic and spatial econometric models. Currently
it contains methods for estimating standard Ordinary Least Squares (OLS), Two Stage Least
Squares (2SLS) and Seemingly Unrelated Regressions (SUR), in addition to various tests of
homokestadicity, normality, spatial randomness, and different types of spatial autocorrelation.
There is also a suite of tests for spatial dependence in models with binary dependent
variables [2]. The package enables the incorporation of both spatial dependence and spatial
heterogeneity into traditional econometric models. To deal with spatial dependence, the package
contains methods for estimating spatial lag and/or error models. Different flavours of these
methods are available according with the characteristics of the specification: with/without
heteroskedasticity or with/without endogenous predictors. Most of these models can then be
fit via Generalised Method of Moments—GMM—or Maximum Likelihood—ML. To incorporate
spatial heterogeneity, spreg allows the specification of spatial regimes in all of its methods, and
provides tests for coefficient stability. For spatial panel estimations, spreg contains classic Spatial
SUR, Spatial Three Stage Least Squares, Lag SUR and Error SUR, in addition to Likelihood
Ratio, Lagrange Multipliers and Chow tests to assess model specification or evaluate parameters.
Additional details on these methods, as well as its implementation in the package, can be found
in Anselin and Rey [4].

(v) spvcm

Variance components models are a kind of multilevel model used extensively in social science [31,
33]. They are most useful in situations where the differences between groups are of interest, but
groups are of varying sizes or have differing levels of variation. Variance components methods
partition variation into “within” group and “between” group variation, allowing for separate
group-level and individual-level error terms. These models can be estimated using a variety of
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Bayesian and Maximum Likelihood methods [11]. In spvcm, a general framework for estimating
spatially-correlated variance components models is provided. This class of models allows for
spatial dependence in the variance components, so that nearby groups may affect one another
[45]. The spvcm package also provides a general-purpose framework for estimating models using
Gibbs sampling in Python, accelerated by the numba package [46].

(d) Visualisation Layer: viz
The viz layer provides functionality to support the creation of geovisualisations and visual
representations of outputs from a variety of spatial analyses. Visualization plays a central role
in modern spatial/geographic data science. Current packages provide classification methods for
choropleth mapping and a common API for linking PySAL outputs to visualization tool-kits in
the Python ecosystem.

(i) mapclassify

Choropleth maps are thematic maps that rely on shading, color, or patterning to represent the
measurement of a statistical attribute across polygonal areas. The effective design of a choropleth
map requires careful consideration of the symbolization as well as the choice of classification
scheme that assigns observations to different map classes. The mapclassify package in PySAL
addresses the second design imperative. Currently, fifteen different classification schemes are
available in mapclassify, including a highly-optimized implementation of Fisher-Jenks optimal
classification [73]. Each scheme inherits a common structure that ensures computations are
scalable and supports applications in streaming contexts. The popular geoprocessing and
visualization packages geopandas and geoplot use mapclassify.

(ii) splot

The splot package provides statistical visualizations for spatial analysis. The package offers, i.e.
methods for visualizing global and local spatial autocorrelation (through Moran scatterplots and
cluster maps), temporal analysis of cluster dynamics (through heatmaps and rose diagrams),
and multivariate choropleth mapping (through value-by-alpha maps; 74). A high level API
supports the creation of publication-ready visualizations. Functionality that provides multiple
views (i.e. scatterplots combined with cluster maps) and small multiples (i.e. facet plots) help
to guide users in their visual analytics workflow and parameter choices through a “grammar
of graphics.” splot’s functionality is implemented across different graphical engines available in
Python (including matplotlib and bokeh) to allow for static and interactive visualizations.

4. Pedagogy and Community
Since its inception in [68], PySAL has been a pedagogical project as much as a software library.
This ambition has materialised over time in two distinctive goals: one, to serve as a platform
that makes cutting-edge spatial analytic techniques available and accessible to a wide range
of users; and two, a pedagogical one, to employ computer programming as a medium to
communicate advanced statistical concepts. At the same time, the project has been built following
standard approaches in the world of open-source development that have reached beyond pure
software development and into community building, which is structured through a transparent
governance model. Over the years, the role of these two aspects -pedagogy and community- has
grown in both relevance and the amount of effort devoted. This section unpacks some of the
approaches adopted and provides further detail on the processes established.

The pedagogical ethos of the project comes across in two broad areas: documentation and
additional materials. First, an exhaustive, clear, and updated documentation is complemented
through direct access to the source code. From the very beginning, a compulsory requirement
for any functionality added to PySAL has been to include a “docstring” together with new code.

Page 10 of 17

https://mc.manuscriptcentral.com/rsos

Royal Society Open Science: For review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

These are human-language explanations of what the method, class, or package does, along with
a list of what is required to pass as input, and what the user can expect to receive as output, as
well as a small example demonstrating its use. This close integration between computer code and
human explanation, although by no means new or unique to PySAL [42], has been a distinctive
feature of the library enhancing the understanding of functionality with wide coverage and
consistency. The rationale behind this approach to developing community code is the belief that,
by making the code easily accessible and complementing it with concise explanations, the user is
more likely to use “code as text,” as [64] argues. This supports and facilitates the transition from
users of the package into developers and computational scholars. Well-documented code is easier
to inspect and understand, so these users can get involved in the library’s inner workings, and
obtain a deeper insight into the computation and methodological details. This approach supports
the library, in that it trains new developers and contributors, but it also supports the broader
academic discipline, because it makes the procedures involved in new science explicit.

Second, much of the effort of the team has been directed not only to detailed software
documentation but also at creating pedagogical materials through the integration of the software
with study resources. For example, [5] and [70] introduce students to the nascent field of
Geographic Data Science. To do so, they feature PySAL extensively. This material serves the
purpose of extended, narrative documentation for the software; at the same time, the pedagogical
approach to theoretical concepts is enriched by being able to take an explicitly-computational
perspective, illustrating statistics with code snippets. The value of these materials is augmented
by an additional effort to promote PySAL in a wide range of workshops and short courses.6

In addition to pedagogy, PySAL has paid special attention to governance. Its first ten years
of existence saw the project grow from a small team localised in the same department, to a
larger collective distributed across the globe. To make this transition successful, several activities
that used to take place in an informal setting in the early days were taken forward more
proactively. First, collaboration around code was from the early days coordinated through an
open, version control-based platform (Google Code first, Github currently). These platforms offer
a detailed log of changes and, through “commit messages”, “issues” and “pull requests”, allow
to reconstruct the evolution of the project as well as the technical discussions that surrounded
it. Given the geographical distribution of developers, the team uses a monthly call to cover
aspects of the development for which written discussion was not practical. Topics such as the
transition to Python 3 or the reorganisation of the library in subpackages were fleshed out in
these calls, but also coordination around conference attendance or workshop proposals. Even
though development is technically possible with the practices just described, the team has been
purposeful about maintaining a regular schedule of face-to-face meetings. Usually held in the
form of “code sprints” alongside academic conferences (such as the American Association of
Geographers, the North American Regional Science, or the Scientific Python Conferences), these
events serve a double purpose: first, they focus attention to particular areas of the project
(maintenance, documentation, code development) that the group has identified as a priority;
second, they act as a “social glue”, keeping team members involved and engaged.

As the project has grown, it has become important to formalise how to integrate and foster
external contributions. We have developed a code of conduct7 that provides guidelines for
interaction and collaboration around PySAL to any individual interested in contributing. As
described above, part of the rationale behind moving to a federated model is to foster external
contributions and to have a more flexible framework to incorporate cognate packages. To make
this process easier, PySAL also has a package template8 that details expected requirements from
any package that wishes to join the federation.

6For an an illustration of materials developed with this outlets in mind, the reader is referred to: http://pysal.org/
notebooks
7A copy is available at: https://github.com/pysal/governance/blob/master/conduct/code_of_conduct.
rst
8A copy is available at: https://github.com/pysal/submodule_template
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Besides collaboration within the PySAL framework, the team has embraced interaction with
the larger Python community for data science. Rather than “reinventing the wheel”, our goal
is to provide the spatial analytic layer that makes cutting edge geospatial techniques available
and integrates seamlessly within the larger ecosystem of Python packages and tools. An example
of this strategy is the integration of choropleth classification schemes from mapclassify into the
geopandas plotting API, or the interoperability between most of PySAL and GeoDataFrames, the
foundational tabular data structure for geospatial data in Python. These technical integrations
have been possible thanks to (but have also contributed to) closer collaboration with the
development teams of other components of the ecosystem such as geopandas or matplotlib.
Thanks to architecture and governance changes, the package is now much more embedded into
the ecosystem at large.

Finally, a note on funding. Although much of the work devoted to PySAL has come out
of traditional “research time”, the team has begun to explore alternative and complementary
funding models to support development. Many of the features currently available were
developed as part of larger research projects and grants that required a computational
implementation of a method that was not available. For example, the giddy package emerged
out of substantive research on income inequality dynamics carried out by members of the team
(e.g. 40,41,66,71). A more recent funding stream has been in the form of the Google Summer of
Code9, a program run by Google that funds students to work on implementing new features on
open-source projects. PySAL has used this model to rewrite internal core data structures, to add
new functionality to already existing packages, or to develop brand new packages such as spint
or splot. Additionally, in 2019 PySAL joined NumFocus10 and is now eligible for small grants to
support the development of open source scientific software.

5. Future Plans and Next Steps
The first ten years of PySAL have seen the project evolve from a small, single package into a
synchronised federation of packages that collectively enhance spatial analytics in Python. In
this process, the technical and human infrastructure that support it has experienced profound
changes, evolving to meet the demands of the given time. With all this ground covered, the logical
question is: What’s next? In this concluding section, we explore what lies ahead; what we consider
as the main opportunities for the project to continue growing, but also the main challenges.

(a) Specific plans
A keen interest of several contributors to PySAL has been to build a first-class module for spatial
optimisation and regionalization. Compared to other functionality in the project, optimisation has
a more complicated set of dependencies. Spatial optimization algorithms heavily rely on general
purpose optimisation or linear programming libraries once the spatial information has been
expressed as a standard optimisation problem. These general-purpose optimization libraries must
operate at peak performance given the difficulty of solving many spatial optimization problems.
Since early releases, PySAL included a region module with a few algorithms implemented
separately. However, it soon became clear that a more unified approach that offloads heavy
computations to a general linear-programming library would be more efficient. This led to a
Google Summer of Code to re-write region with a unified approach to its API. Recently however,
as the ambitions of other packages such as spaghetti have expanded into domains that also
require optimisation routines, the team has decided to move development to a new spopt
package that unifies the approach, and provides underlying spatial optimisation routines in a
more flexible and general way. In this context, there is an ample agenda to implement core
algorithms, expose them through general interfaces, and then use them to build applications
related to regionalization problems (e.g. spectral clustering, the SKATER or REDCAP algorithms),
9https://summerofcode.withgoogle.com
10https://numfocus.org/
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spatial optimisation along networks (e.g. optimal facility location modeling), or other domains
where it might be useful.

A second area of interest aims to provide better integration with related libraries from the
Python data science ecosystem. As mentioned above, the first efforts in PySAL had to be spent
in building a set of utilities that, even though were not planned as a core part of the library,
allowed the user to interface with spatial data (e.g. shapefile readers and writers). As the Python
community evolved, these tasks were taken up by more comprehensive projects and the main
priority of PySAL in this respect became to appropriately interface with these projects. A good
example of this is geopandas, a package that extends functionality of pandas datatypes to spatial
data. Once the project matured, it allowed PySAL to drop support for file I/O and focus on
analytics. But geopandas also became a direct user of the PySAL ecosystem by using choropleth
classification algorithms from mapclassify instead of re-implementing them. As the ecosystem
matures and foundational libraries become more established and stable, a priority of PySAL is
to further integrate with this functionality, making it not only possible but pleasant to write code
that seamlessly knits different projects into a unified workflow that favors developer productivity
and computational performance.

Finally, we increasingly see Python as one of many environments with which scholars and
industry researchers conduct their work. So-called “polyglot” environments that seamlessly allow
scholars to use packages from different computer languages in a single analysis are becoming
increasingly common. This suggests that users of the library and developers building on top
of the library may actually be coming from entirely different computing platforms. Further,
documenting the interactions between software ecosystems becomes important when considering
actual analytical workflows, where it may be easier to conduct some parts of an analysis in some
environments and not others [6]. Thus, it becomes important for the library to document and build
upon its integrations with other packages, including desktop GIS software (QGIS, ESRI ArcGIS),
and other computing languages (such as Julia or R), in order to ensure that PySAL is usable in
whatever environment the user actually resides.

(b) General reflections
Beyond specific ideas, a series of guiding principles and ambitions are likely to be at the heart
of the next “big decisions.” The first one is the sense that the ground work required to build
a platform of spatial analytics, and its place in the broader data science Python ecosystem, is
largely completed. Maintenance (not a light task) aside, this makes it possible to focus entirely on
ensuring the cutting edge methods are implemented shortly after they are invented. Our plan is
that each federated package stays at the frontier of the domain whose functionality it represents.
A key ingredient of this idea is to reach out to scientists beyond the core development team and
work with them to integrate their methods in PySAL code. Much of this process is enhanced
with the move to a federated model discussed in the second section and, to some extent, it is
already at work. For example, the authors of the “S-MAUP” statistic proposed in [17] contributed
their code to begin its implementation as part of esda.11 Given recent changes in the library, we
can effectively integrate contributions directly from the original authors rather than having to
shoulder the burden of re-implementing cutting edge algorithms ourselves. Going forward, we
will continue to integrate cutting-edge spatial science into PySAL given its new governance and
technical structures.

To end this paper, we would also like to reflect on what we believe has been the most successful
lesson learned over this period: the ability to maintain a flexible approach to adapt as the
environment changes. It is important to be willing to change your own mindset to accommodate
paradigm shifts in order to remain useful. This flexibility may slow achievement of short-term
goals, but is the only way we have found to stay relevant. Our original intention was not to write
file readers and writers, but there was no other way to make functionality in PySAL available to
11The original pull request, with discussion and progress made for the contribution, is available at: https://github.com/
pysal/esda/pull/58
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a wider audience. Neither were we enthusiastic about the work required to become compatible
with Python 3. But, the rest of the ecosystem was moving in that direction, and ignoring it would
have relegated the project to obsolescence; even the move to a federated model required a lot of
additional developer time that could have been spent implementing new features. Flexibility can
be expensive to attain, but it is a valuable investment for the future. We do not know what the
scientific computing world will look like in ten years. But, as long as Python is playing a key role,
we would like PySAL to continue contributing the spatial analytic layer to its larger ecosystem.
We are sure that ensuring this contribution continues will take time, effort, and adaptation.

Authors’ Contributions. SJR directs and is co-founder of the PySAL project, and leads pysal and co-
maintains libpysal, esda, inequality, mapclassify, giddy, and pointpats. LA is co-founder of PySAL and
leads spreg. PA maintains spreg. DAB leads notebooks and co-maintains libpysal and splot. RXC co-
maintains segregation. JDG leads spaghetti. WK leads giddy and co-maintains pointpats. EK co-maintains
pysal and segregation. ZL co-maintains mgwr. SL leads splot. TMO leads spint and splgm. HS co-maintains
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